Adopted Levels, Gammas

			Hist	ory			
	Туре	A	uthor	Citation	Literat	ure Cutoff Date	
	Full Evaluation	D. Abriola(a)	, A. A. Sonzogni	NDS 109,2501 (2	2008) 1	-Apr-2008	
$Q(\beta^{-})=162 \ 4$; $S(n)=78$ Note: Current evaluation $Q(2\beta^{-})=3347.7 \text{ keV } 22$ Symbols and Abbrevia $X_{ijk}=B(E0; \ 0_i^+ \rightarrow 0_j^+)/2$ SPU=Single Particle U α : Additional information	54.4 21; S(p)=1 on has used the f 2 (2003Au03). tions: β (E2; 0 ⁺ _i \rightarrow 2 ⁺ _k). finit for E0 Trans ion 1.	1522 7; $Q(\alpha) = -$ following Q rec itions=0.5/A ^(2/3)	-5002 <i>4</i> 2012W ord 161 4 78	a38 56.3 2211525 7 -	-5000 4 20	03Au03.	
			⁹⁶ Zr L	evels			
With a ground state half life of ⁹⁶ Zr. T be found at www.r	$Q(2\beta^{-})=3347.7$ l he adopted value indc.bnl.gov/bbd	keV 22 (2003A e comes from thecay.	u03), there have be ne latest results of	en many experime he NEMO collabo	ntal programs r ration. A list o	to determine the 2β - f all experimental eff	decay forts cai
			Cross Reference	(XREF) Flags			
	A $^{96}Y\beta^{-}d$	lecay (5.34 s)	G 96 Zr(p,p' γ)	M	Coulomb excita	tion	
	B 96 Y β^- d	lecay (9.6 s)	H ${}^{96}Zr(d,d'),$	(pol d,d') N $^{\circ}$	⁹⁸ Mo(⁶ Li, ⁸ B), ⁹	⁹⁶ Zr(⁶ Li, ⁶ Li')	

		$ \begin{array}{l} \begin{array}{l} & 1 \ \beta & \mathrm{decay} \\ \mathrm{C} & {}^{96}\mathrm{Zr}(\mathrm{n},\mathrm{n}'\gamma) \\ \mathrm{D} & {}^{94}\mathrm{Zr}(\mathrm{t},\mathrm{p}) \\ \mathrm{E} & {}^{94}\mathrm{Zr}(\mathrm{t},\mathrm{p}\gamma) \\ \mathrm{F} & {}^{96}\mathrm{Zr}(\mathrm{p},\mathrm{p}') \end{array} \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcl} & \text{if } M(\text{ Li, B}), & \text{ Li }(\text{ Li, Li}), \\ t') & 0 & 100 \text{ Mo}(d, ^6\text{Li}), \\ a') & \text{P} & 1^{76} \text{Yb}(^{28}\text{Si}, X\gamma), \\ c, 1^2C', & Q & 9^6\text{Zr}(^{32}\text{S}, ^{32}\text{S}'\gamma), \\ ^{50}O, ^{16}O') \end{array}$
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	0+	2.0×10 ¹⁹ y 4	ABCDEFGHI JKLMNOPQ	$\begin{split} T_{1/2}: & \text{from } T_{1/2}(2\nu 2\beta) = 2.0 \times 10^{19} \text{ y } 3(\text{stat.}) \ 2(\text{syst.}), \ \text{NEMO-3} \\ & \text{Collaboration } (2006\text{Sh31}, 2005\text{Sa07}, 2005\text{Si06}). \ \text{Values from} \\ & \text{geochemical methods: } T_{1/2} = 9.4 \times 10^{19} \text{ y } 32 \ (2001\text{Wi17}), \\ & T_{1/2} = 3.9 \times 10^{19} \text{ y } 9 \ (1993\text{Ka12}). \ \text{Neutrino-less values from} \\ & 1999\text{Ar25}, \ \text{NEMO-2} \ \text{Collaboration, } 90\% \ \text{CL}, \ T_{1/2}(0\nu 2\beta, \\ & \text{g.s. to } \text{g.s.}) > 1.0 \times 10^{21} \text{ y}, \ T_{1/2}(0\nu 2\beta, \text{g.s. to } 2^+) > 3.9 \times 10^{20} \text{ y.} \\ & < r^2 > ^{1/2} (\text{charge}) = 4.3498 \ 11 \ (2004\text{An14}). \end{split}$
1581.64 [@] 6	0+	38.0 ns 7	ABCDEFGH NO	J^{π} : E0 to 0 ⁺ . $T_{1/2}$: weighted average of 38.0 ns <i>15</i> (1972Bu18), 37.8 ns <i>12</i> (1972AnZZ), and 38.2 ns <i>12</i> (1971AnZF). 1971AnZF list their data as mean life; by comparing this group's later measurement in 1972AnZZ, the evaluator has assumed that their result was $T_{1/2}$.
1750.497 <i>15</i>	2+	0.57 ps 7	ABCDEFGHIJklMNOPQ	μ =+0.06 <i>14</i> ; g=+0.03 <i>7</i> (2003Ku11) J ^{π} : stretched E2 to 0 ⁺ . T _{1/2} : from DSAM following Coulomb excitation of ⁹⁶ Zr beams (2003Ku11), other: 0.31 ps <i>13</i> from B(E2)=0.055 <i>22</i> (1965Ga05, Coulomb excitation)
1897.158 ^{&} 16	3-	68 ps 4	ABCDEFGHIJkl NOPQ	μ =+2.9 5 (2003Ku11); g=+0.98 15 J ^{π} : L(α , α')=3. T _{1/2} : from recoil distance measurement ⁹⁶ Zr(³² S, ³² S' γ) (1993Ho19). Other: 50 ps 7 from β decay of 5.34-s ⁹⁶ Y (1990Ma45); 46 ps 15 from β decay of 9.6-s ⁹⁶ Y (1990Oh02) both by the centroid-shift method.
2225.846 [@] 17	2+	<10 ps	ABC EFGH O	T _{1/2} : from β decay of 5.34-s ⁹⁶ Y (1990Ma45).

Continued on next page (footnotes at end of table)

⁹⁶Zr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		Comments
2438.746 18	3+	0.38 ps +19-10	C EFGHI		J ^{π} : stretched E2 2226 γ to 0 ⁺ . J=3 from $\gamma(\theta)$ in $(n,n'\gamma)$; π =+ from M1 to 2 ⁺ . T _{1/2} : from $(n,n'\gamma)$; value may be about 20% lower than indicated because cascade feeding was not
2668.82 4	(2+)	0.24 ps +32-10	A C EFGHI		considered. J^{π} : L(p,p')=(2). $T_{1/2}$: from (n,n' γ); value may be about 20% lower than indicated because cascade feeding was not
2695.18 <i>3</i>	0^{+}	28 ps 7	A C EFGH		considered. J^{π} : E0 to 0 ⁺ . The form of form of 5.24 a ⁹⁶ N (1000Mp45)
2750 <i>15</i> 2781.2? <i>10</i>	4+		В	0	J^{π} : L(d, ⁶ Li)=4.
2857.373 [@] 23	4+	$0.60^{\#}$ ps +46-18	BCDEFGHIJ	OP	J^{π} : stretched E2 632 γ to 2 ⁺ . L(d,d')=4.
2925.55 3	0+	20 ps 14	A CDEFGH J		T _{1/2} : from β decay of 5.34-s ⁹⁶ Y (1990Ma45); other: >1.4 ps (n,n' γ). J ^{π} : E0 to 0 ⁺ ; however, L=5 in (α , α') and (p,p'); 1990MoZY in (d,d') did not observe L=5 at this energy. They suggest that L(α , α') and (L(p,p') results may be due to an impurity.
3039 5	3-		F		J^{π} : L(p,p')=3.
3082.36 <i>3</i>	4+	>1.4 [#] ps	BCDEFGHIJ	Р	$J^{\pi}: L(\alpha, \alpha') = 4.$
3119.87 <mark>&</mark> 3	5-	$0.58^{\#}$ ps +68-21	BC EFGHIJ	Р	J^{π} : stretched E2 1223 γ to 3 ⁻ , E1 γ from 6 ⁺ .
3150.28 <i>3</i>	3-	>0.54 [#] ps	C EFGH		J=3 or 5 from $\gamma(\theta)$ in $(n,n'\gamma)$; $\sigma(n,n')$ excludes J=5; π =- from M1 to 3 ⁻ .
3176.43 3	4+	$0.39^{\#}$ ps +59-28	BCDEFGH J		J^{π} : $L(\alpha, \alpha') = 4$.
3211.84 4	2+	$0.090^{\#}$ ps +21-14	A C EFGHIJ		$J^{\pi}: L(p,p')=2.$
3243.61 7		$>0.097^{\#}$ ps	C		
3248 63 5	2+	$0.19^{\#}$ ns $+5-4$	СЕНІ		I^{π} : $I(\alpha, \alpha')=2$
3309.19 9	(4 ⁺ ,5 ⁺ ,6 ⁺)	0.19 p3 10 7	BC EFGH	Р	J ^{π} : E2 to 4 ⁺ and γ to 5 ⁻ . L(p,p')=4; however, this result is suspect because of 90Zr contaminant peak at 3308 keV. J ^{π} (3309)=(5,6) ⁻ (1987StZX), 5 ⁻ (1988StZS) in the β decay of 9.6-s isomer of ⁹⁶ Y; no experimental details available.
3363.30 4			C FGH		
3399 11	(4^{+})		Н		J^{π} : L(d,d')=(4).
3427 5	4+		FHJ		J^{π} : L(p,p')=4.
3448.72 8 3450.16 <i>17</i>	(2+)	>0.66 [#] ps	C F H A F		J^{π} : L(p,p')=(2).
3457 2	(6+)	щ	FH		J^{π} : L(p,p')=(6).
3472.14 7	2+	0.15 [#] ps +4-2	С F H ј		J^{π} : L(p,p')=2; 3482 <i>15</i> level in (α, α') has a L=(2) component.
3483.44 [@] 9	6+	25 ps 9	BCDEFGHIj	Р	T _{1/2} : from 9.6-s isomeric ⁹⁶ Y β decay (1991OhZZ). J ^π : E1 364γ to 5 ⁻ , L(p,p')=6.
3509.16 7	2+	0.104 [#] ps 21	A C FGH		J^{π} : L(p,p')=2.
3556.18 8 3577.62 5	2+	0.16 [#] ps 4	C F HIJ C FGH		J ^{π} : L(α , α')=2; L=5 in (t,t') is probably wrong.
3586 2	(4 ⁻)		FH		J^{π} : from coupled-channels calculations in (p,p').
3602.17 <i>20</i> 3608 <i>15</i> 3611 <i>5</i>	$(1,2^+)^{\ddagger}$ $(5^-,6^+)$	0.19 [#] ps +19-7	CFH J F		J^{π} : L(α, α')=(5,6). J^{π} : L(p, p')=(2,3,4).
3620.73 7	$(1,2^+)^{\ddagger}$	0.005 [#] ps 3	СН		

Continued on next page (footnotes at end of table)

⁹⁶Zr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		Comments
3630 <i>20</i> 3676 <i>5</i>	(6+)		I F HI		J^{π} : L(t,t')=(6). J^{π} : L(p,p')=5; L(d,d')=(3,4,5); L(t,t')=(2,3); could be a
3605 5			F 1		doublet. I^{π} : $I(p, p') = 2$: $I(q, q') = 3$
3700.68 <i>10</i> 3732	(1,2 ⁺) [‡]	0.006 [#] ps 3	ACH FH		J : L(p,p) - 2, L(a,a) - 3.
3749.38 <i>10</i> 3761 8 3772.2 <i>4</i>	4 ⁺ 2 ⁺ 6 ⁺	>0.26 [#] ps	BC EF HIJ D I B EF H	Р	J^{π} : L(p,p')=L(t,t')=4; note L(d,d')=(4),5. J^{π} : L(t,t')=2. J^{π} : stretched E2 617 γ from 8 ⁺ , γ to 4 ⁺ .
3857.48 20	4 2 ⁺	0.055 [#] ps +21-14	C F H		J^{π} : L(p,p')=2.
3865.16 <i>10</i> 3895 <i>5</i> 3924.6 <i>10</i>	4+	-	C F B F HIJ		J^{π} : L(p,p')=4. J^{π} : L(t,t')=5 and L(α, α')=4.
3947.19 <i>10</i> 3997 4014.07 <i>20</i>	$(1,2^+)^{\ddagger}$ (2^+) 5^-	$0.010^{\text{#}} \text{ ps } +6-4$	C FH FH CEFGHJ		J^{π} : L(p,p')=(2). J^{π} : L(p,p')=5.
4024.5? 8 4034 8	3-		A DFH		J^{π} : L(p,p')=3.
4037.89 <i>20</i> 4038 <i>5</i>	$(1,2^+)^{\ddagger}$	0.007 [#] ps +6-5	C F HI		J^{π} : L(p,p')=5 (1984FuZY); however, L(p,p')=2 (1993Ho01).
4055 5 4068 2 4126.3 10	2 ⁺ (1 ⁻) (4 ⁺)		F FH BFHI		$J^{\pi}: L(p,p')=2. J^{\pi}: L(p,p')=(1). J^{\pi}: L(t,t')=(4). $
4132.4 <i>3</i> 4139 <i>5</i> 4160	$(1,2^+)^{\ddagger}$ 3 ⁻ 5 ⁻	<0.017 [#] ps	CH FJ I		J ^{π} : L(α, α')=3; however, L(p,p')=(0,1,2). J ^{π} : L(t,t')=5.
4205 5 4234.7 ^{&} 5	4+ 7-		FH BEFHJ	Р	J^{π} : L(p,p')=4. J^{π} : L(d,d')=7.
4258.0 <i>4</i> 4261.3 <i>5</i> 4323 <i>8</i>	3 ⁻ (5 ⁺ ,6 ⁺) (3 ⁻)		A D H B HI		J^{π} : L(d,d')=3. γ 's to 4 ⁺ and 6 ⁺ , γ from (7 ⁺ ,8 ⁺), E=5066.2. J^{π} : L(d,d')=(3),(2). L(t,t')=(3).
4341 7 4389.5 5	$2^+_{8^+}$	127 ps 10	DFHJ BE	Р	J^{π} : L(p,p')=2. J^{π} : stretched E2 906γ to 6 ⁺ , γ to 7 ⁻ . $T_{1/2}$: from 9.6-s ⁹⁶ Υ β decay (1990OhZZ,1991OhZZ).
4390 4430 <i>5</i> 4470 4479 <i>5</i>	(4 ⁺) 6 ⁺ 5 ⁻ 4 ⁺		I FHJ I F		$J^{\pi}: L(t,t')=4. J^{\pi}: L(\alpha,\alpha')=6. J^{\pi}: L(t,t')=5. J^{\pi}: L(t,t')=5. J^{\pi}: L(p,p')=4. $
4512.5 7 4520 4531 6	$(1,2^+)^{\ddagger}$ (4^+) 3^-		A H I H I		J^{π} : L(t,t')=(4). J^{π} : L($\alpha \alpha'$)=3
4570.1 8 4580 4640 8	$(5^-, 6^+)$ 4 ⁺		B I HJ	Р	J^{π} : gammas to 4 ⁺ ,7 ⁻ . J^{π} : L(t,t')=4.
4689.7 <i>11</i> 4698 <i>5</i>	2+		B F	Р	J^{π} : L(p,p')=2.
4737.5 8 4751.5 7 4757.2 8	$(1,2^+)^{\ddagger}$ $(7,8^+)$		A B B		J ^{π} : log $f^{1u}t=7.6$ for β^{-} decay from (8 ⁺) parent; γ to 6 ⁺ .
4807 <i>5</i> 4837.75 <i>20</i>	3 ⁻ (1 ⁻ ,2 ⁺)		F IJ A F		J^{π} : $L(\alpha, \alpha')=3$. J^{π} : γ to 0^+ and 3^- levels; log <i>ft</i> =6.4 for β^- decay from

Continued on next page (footnotes at end of table)

⁹⁶Zr Levels (continued)

E(level) [†]	\mathbf{J}^{π}		X	REF		Comments
						0^- parent.
4845.4 <i>14</i> 4881.9? <i>10</i>		B A		IJ		J^{π} : L(α, α')=3; L(t,t')=4.
4895.2 7	$(1,2^+)^{\ddagger}$	Α	F			
4906.9 8	(10 ⁺)	В			Р	
4914.1? 10	$(1,2^+)^+$	Α	_	_		
4929.1 9	$(1,2^+)^+$	A	F	J		
5014 5			F			
5065 5			F			
5066.2 6	$(7^+, 8^+)$	В				J ^{π} : log ft=5.7 for β^{-} decay from (8 ⁺) parent; γ to 6 ⁺ .
5103 15		R	F	J		
5196.9? 10		A	÷			
5228.5 6	$(1,2^+)^{\ddagger}$	Α				
5235.3 8	$(7,8^+)$	В				J^{π} : log $f^{1u}t=7.5$ for β^- decay from (8 ⁺); γ to 6 ⁺ .
5245 5	+		F			
5272.0 6	$(1,2^+)^+$	A				
5329 5	4+	A	F	J		J^{π} : $L(\alpha, \alpha') = 4$.
5371 15	4+			J		J^{π} : $L(\alpha, \alpha') = 4$.
5384 5			F			
5408.3 /	(1.0+)	A	-			
5483.8 11	$(1,2)^{(1,2)}$	A	г		Р	J^{π} : γ to 8^+ .
5502.2? 8	$(1,2^+)^{\ddagger}$	Α				,
5507.6 5	$(7^+, 8^+)$	В				J^{π} : log ft=5.2 for β^- decay from (8 ⁺); γ to 6 ⁺ .
5538.9 6	$(1,2^+)^{\ddagger}$	Α				
5551.6 6	$(1,2^+)^{\ddagger}$	Α				
5573.9 6	$(1,2^+)^{\ddagger}$	Α				
5601.5 6	$(1,2^+)^+$	A				
5628.9 11		A B				
5652.9? 10		Α				
5701.3 6		Α				
5719.1 8	$(1,2^+)^+$	Α			P	
5741.5? 10	(11)	А			Ρ	
5783.1 8	$(1,2^+)^{\ddagger}$	Α				
5804.5 7	$(1,2^+)^{\ddagger}$	Α				
5838.3 10	$(1,2^+)^{\ddagger}$	Α				
5847.5 6	$(1,2^+)^{\ddagger}$	Α				
5899.8 11		В				
5914.7 6	$(1,2^+)^+$	A				
5934.6 6	$(1,2^+)^+$	A				
0145.0? 8	$(1,2^+)^+$	A				
6245.7 <i>16</i>	$(1,2^+)^{+}$ (12^+)	A			Р	
6460.5 19	(13+)				P	
6821.3 22	(14 ⁺)				Р	

⁹⁶Zr Levels (continued)

[†] From a least-squares fit to the E γ assuming Δ E γ =1 keV when unknown. [‡] γ to 0⁺.

[#] From (n,n'γ).
[@] Band(A): 4p-4h intruder band.
[&] Band(B): Negative parity sequence.

						Adopted	Levels, Gammas	(continued)	
							γ (⁹⁶ Zr)		
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α	Comments
1581.64 (0+	1581.6 4		0.0	0+	E0 [#]			E_{γ} : from ⁹⁶ Y β ⁻ decay (5.34 s). ρ^2 =7.53×10 ⁻³ 14=0.32 <i>I</i> (SPU); from t, K,L _I ,L _{II} shell conversion factors from 1970Be87, and the K-shell conversion/pair production ratio from 1986PaZM.
1750.497 2	2+	1750.42 2	100	0.0	0+	E2		0.000398 6	$\alpha(K)=0.000184 \ 3; \ \alpha(L)=2.01\times10^{-5} \ 3; \ \alpha(M)=3.48\times10^{-6} \ 5; \ \alpha(N)=4.94\times10^{-7} \ 7 \ \alpha(O)=3.52\times10^{-8} \ 5; \ \alpha(N+)=0.000190 \ 3 \ B(E2)(W.u.)=2.3 \ 3 \ Mult.: stretched O from \gamma\gamma(\theta) in \beta-decay: E2 from RUL.$
1897.158	3-	146.653 ^{<i>f</i>} 10	100 ^{<i>f</i>} 4	1750.497	2+	(E1)		0.0371	α(K)=0.0327 5; α(L)=0.00366 6; α(M)=0.000632 9; α(N)=8.84×10-5 13; α(O)=5.80×10-6 9 α(N+)=9.42×10-5 14 B(E1)(W.u.)=0.00123 10 Mult.: stretched D from γγ(θ) in β- decay and ΔJπ.
		1897.21 ^g 3	19.0 ^g 4	0.0	0+	[E3]		0.000440 7	α(K)=0.000268 4; α(L)=2.97×10-5 5; α(M)=5.14×10-6 8; α(N)=7.31×10-7 11 α(O)=5.17×10-8 8; α(N+)=0.0001367 20 B(E3)(W.u.)=57 4 Iγ(147) and Iγ(1897): weighted average of (p,p'γ), (n,n'γ) and β-decay(5.34 s) data sets.
2225.846	2+	328.75 3	14 ^b I	1897.158	3-	(E1(+M2))	-0.02 [@] 5	0.00380 16	$\alpha(K)=0.00336\ 14;\ \alpha(L)=0.000371\ 17;\ \alpha(M)=6.4\times10^{-5}\ 3;\ \alpha(N)=9.1\times10^{-6}\ 5;\ \alpha(O)=6.2\times10^{-7}\ 3\ \alpha(N+)=9.7\times10^{-6}\ 5\ B(E1)(W.u.)>6.4\times10^{-5}\ Mult.:\ from\ \gamma(\theta)\ in\ (n,n'\gamma)\ and\ \Delta J^{\pi}.$
		475.33 1	57 ^b 1	1750.497	2+	M1+E2	-0.09 [@] +1-2	0.00361 5	$\alpha(K)=0.00318 5; \alpha(L)=0.000355 5; \alpha(M)=6.16\times10^{-5} 9; \alpha(N)=8.76\times10^{-6} 13; \alpha(O)=6.19\times10^{-7} 9 \alpha(N+)=9.38\times10^{-6} 14 B(E2)(W.u.)>0.16; B(M1)(W.u.)>0.0058 Mult.: from \gamma(\theta) in (n,n'\gamma) and ce data in (t,p\gamma).$
		644.18 <i>6</i>	28 ^b 2	1581.64	0+	E2		0.00203 3	$\begin{aligned} &\alpha(\text{K}) = 0.001783 \ 25; \ \alpha(\text{L}) = 0.000204 \ 3; \ \alpha(\text{M}) = 3.53 \times 10^{-5} \ 5; \\ &\alpha(\text{N}) = 4.98 \times 10^{-6} \ 7; \ \alpha(\text{O}) = 3.37 \times 10^{-7} \ 5 \\ &\alpha(\text{N}+) = 5.31 \times 10^{-6} \ 8 \\ &\text{B(E2)(W.u.)} > 2.7 \\ &\text{Mult.: } Q \ \text{from } \gamma(\theta) \ \text{in } (n,n'\gamma); \ \text{E2 \ from RUL.} \end{aligned}$
		2225.93 4	100 ^b 5	0.0	0+	E2		0.000550 8	$\alpha(K)=0.0001185 \ 17; \ \alpha(L)=1.283\times10^{-5} \ 18; \alpha(M)=2.22\times10^{-6} \ 4 \alpha(O)=2.26\times10^{-8} \ 4; \ \alpha(N+)=0.000417 \ 6$

6

 $^{96}_{40}{
m Zr}_{56}$ -6

					Adopted	l Levels, Gammas	(continued)		
						γ (⁹⁶ Zr) (continue	ed)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	α	$I_{(\gamma+ce)}$	Comments
2438.746	3+	688.25 1	100	1750.497 2+	M1+E2	+0.02 [@] +2-1	0.001529 22		B(E2)(W.u.)>0.020 Mult.: Q from γ(θ) in (n,n'γ); E2 from RUL. α(K)=0.001350 19; α(L)=0.0001491 21; α(M)=2.59×10 ⁻⁵ 4 α(O)=2.62×10 ⁻⁷ 4; α(N+)=3.94×10 ⁻⁶ 6 B(E2)(W.u.)=0.1 +3-1; B(M1)(W.u.)=0.18 +5-9
2((0.02		112 0 0	6 10 16	2225.046.24					Mult.: from $(n,n'\gamma)$.
2668.82	(2+)	442.9 <i>3</i> 771.60 <i>4</i>	6.4° <i>16</i> 35 [°] 5	2225.846 2+ 1897.158 3 ⁻	(E1+M2)	+0.08 [@] +6-7	0.00050 4		$\alpha(K)=0.00044 \ 3; \ \alpha(L)=4.8\times10^{-5} \ 4; \\ \alpha(M)=8.4\times10^{-6} \ 6; \ \alpha(N)=1.19\times10^{-6} \ 9; \\ \alpha(O)=8.4\times10^{-8} \ 6 \\ \alpha(N+)=1.28\times10^{-6} \ 10 \\ B(E1)(W.u.)=(0.0007 \ +4-7); \\ B(M2)(W.u.)=(4.E+1 \ +6-4) \\ Mult : from \ \gamma(\theta) in (n \ r' \gamma) and \ \Delta J^{\pi}.$
		918.6 <i>1</i>	100 ^c 5	1750.497 2+	M1,E2&		0.000813 13		$\alpha(K) = 0.000718 \ II; \ \alpha(L) = 7.95 \times 10^{-5} \ I6; \alpha(M) = 1.38 \times 10^{-5} \ 3; \ \alpha(N) = 1.96 \times 10^{-6} \ 4 \alpha(O) = 1.377 \times 10^{-7} \ 20; \ \alpha(N+) = 2.09 \times 10^{-6} \ 4$
2695.18	0+	469.33 <i>3</i>	100	2225.846 2+	[E2]		0.00507 8		B(E2)(W.u.)=5.E+1 7; B(M1)(W.u.)=0.04 6 α (K)=0.00445 7; α (L)=0.000522 8; α (M)=9.06×10 ⁻⁵ 13; α (N)=1.269×10 ⁻⁵ 18; α (O)=8.30×10 ⁻⁷ 12 α (N+)=1.352×10 ⁻⁵ 19 B(E2)(Wu)=34 9
		1113.53 [‡]		1581.64 0+	E0 [#]			0.018	$I_{(\gamma+ce)}: ce(K)(1114)/I(469\gamma)=0.00015 to 0.00018 in (t,p\gamma). X_{322}=0.037 6 (if 1114.6\gamma is M1 or E2), =0.043 7 (if 1114.6\gamma is E1) (1988HeZM).$
		2695.17‡		0.0 0+	E0 [#]			0.0030	I _(γ+ce) : from ce(K)(2695)/I(469γ)=0.000030 in (t,pγ). X ₃₁₂ =0.0039 9 (1988HeZM); statistical uncertainty only, a calibration uncertainty of 50% for E _e >1600 keV is not included. ρ_{32}^2/ρ_{31}^2 =9.4 26 (1988HeZM).
2781.2? 2857.373	4+	884.0 ^{<i>i</i>} 631.45 ^{<i>e</i>} 4	100 21 ^{de} 4	1897.158 3 ⁻ 2225.846 2 ⁺	E2(+M3) ^{<i>a</i>}	-0.02 [@] 8	0.00215 12		$\alpha(K)=0.00189 \ 11; \ \alpha(L)=0.000216 \ 13; \alpha(M)=3.75\times10^{-5} \ 22; \ \alpha(N)=5.3\times10^{-6} \ 4; \alpha(O)=3.56\times10^{-7} \ 21$

 \neg

 $^{96}_{40}{
m Zr}_{56}$ -7

					Adopte	ed Levels, Gan	nmas (continue	<u>d)</u>
						γ ⁽⁹⁶ Zr) (cor	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	α	Comments
2857.373	4+	960.9 ^e 2	15 ^{de} 4	1897.158 3-	(E1)		0.000311 5	$\begin{aligned} &\alpha(N+)=5.6\times10^{-6} \ 4\\ B(E2)(W.u.)=&(56+20-44)\\ &\alpha(K)=&0.000275 \ 4; \ \alpha(L)=&2.99\times10^{-5} \ 5; \ \alpha(M)=&5.18\times10^{-6} \ 8;\\ &\alpha(N)=&7.36\times10^{-7} \ 11\\ &\alpha(O)=&5.22\times10^{-8} \ 8; \ \alpha(N+)=&7.88\times10^{-7} \ 11 \end{aligned}$
		1106.88 ^e 2	100 ^{de} 6	1750.497 2+	E2(+M3) ^a	-0.03 [@] 3	0.000536 10	B(E1)(W.u.)=7.E-5 +3-6 Mult.: stretched D from $\gamma\gamma(\theta)$ in β^- decay and ΔJ^{π} . $\alpha(K)=0.000472 \ 8; \ \alpha(L)=5.23\times10^{-5} \ 9; \ \alpha(M)=9.06\times10^{-6} \ 16;$ $\alpha(O)=9.01\times10^{-8} \ 16$ $\alpha(N+)=2.18\times10^{-6} \ 4$ B(E2)(Wu) =(16 +5-13): B(M3)(Wu) =(8 E+4 +17-8)
2925.55	0^{+}	230.38 [‡]		2695.18 0+	E0 [#]			$X_{432} < 2.8 (2\sigma) (1988 \text{HeZM}).$
		699.9 ^{<i>f</i>} 3	40 ^{<i>f</i>} 3	2225.846 2+	(E2)		0.001621 23	$\alpha(\mathbf{K})=0.001427\ 20;\ \alpha(\mathbf{L})=0.0001620\ 23;\ \alpha(\mathbf{M})=2.81\times10^{-5}\ 4$ $\alpha(\mathbf{O})=2.70\times10^{-7}\ 4;\ \alpha(\mathbf{N}+)=4.24\times10^{-6}\ 6$ B(E2)(W.u.)=1.8 14 Mult : ce data in (t rot) give M1 E2: At rules out M1
		1175.04 <i>3</i>	100 <i>15</i>	1750.497 2+	(E2)		0.000473 7	$\alpha(\mathbf{K})=0.000413 \ 6; \ \alpha(\mathbf{L})=4.56\times10^{-5} \ 7; \ \alpha(\mathbf{M})=7.90\times10^{-6} \ 11; \ \alpha(\mathbf{N})=1.121\times10^{-6} \ 16 \ \alpha(\mathbf{O})=7.88\times10^{-8} \ 11; \ \alpha(\mathbf{N}+)=6.07\times10^{-6} \ 9 \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.u.)=0.3 \ 3 \ \mathbf{Mult}: ce data in (try) give \mathbf{M}1/\mathbf{E}2; \ \mathbf{A}1 \text{ rules out } \mathbf{M}1$
		1343.89 [‡]		1581.64 0+	E0 [#]			$X_{422} < 0.119 (2\sigma) (1988 \text{HeZM}).$
		2925.50 [‡]		0.0 0+	E0 [#]			$X_{412}=0.067\ 27\ (1988\text{HeZM})$; statistical uncertainty only; a calibration uncertainty of 50% for E _e >1600 keV is not included. $\rho_{22}^2/\rho_{21}^2 < 3.0\ (1988\text{HeZM}).$
3082.36	4+	224.8	10.3	2857.373 4+				E_{γ} : observed only in ${}^{96}Y \beta^{-}$ Decay (9.6 s).
		643.9 ^{<i>h</i>} 2	7.1 ^h 8	2438.746 3+				
		856.6 ^h 2	6.3 ^h 13	2225.846 2+	[E2]		0.000969 14	$\alpha(K)=0.000854 \ 12; \ \alpha(L)=9.57\times10^{-5} \ 14; \ \alpha(M)=1.660\times10^{-5} \ 24 \ \alpha(O)=1.624\times10^{-7} \ 23; \ \alpha(N+)=2.51\times10^{-6} \ 4$
		1185.19 ^g 3	100.0 ^g 13	1897.158 3-	E1(+M2) ^{&}	+0.02 [@] 3	0.000244 4	B(E2)(W.u.)<1.6 $\alpha(K)=0.000186 \ 3; \ \alpha(L)=2.02\times10^{-5} \ 4; \ \alpha(M)=3.49\times10^{-6} \ 6; \ \alpha(N)=4.96\times10^{-7} \ 9$ $\alpha(O)=3.53\times10^{-8} \ 6; \ \alpha(N+)=3.44\times10^{-5} \ 5$ B(E1)(Wu)<0.00010; B(M2)(Wu)<0.54
		1331.8 <mark>h</mark> 2	10.1 ^h 1.3	1750.497 2+				D(D)/() 10.00010, D(III2)(
3119.87	5-	1222.70 3	100	1897.158 3-	E2+M3 ^{&}	-0.05 [@] 3	0.000444 9	$\alpha(K)=0.000383 \ 8; \ \alpha(L)=4.22\times 10^{-5} \ 9; \ \alpha(M)=7.31\times 10^{-6} \ 15;$

 ∞

					Ac	lopted Levels,	Gammas (cor	ntinued)	
						γ (⁹⁶ Zr)) (continued)		
E _i (level)	J^{π}_i	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α	Comments
									$\begin{array}{l} \alpha(\mathrm{N}) = 1.037 \times 10^{-6} \ 21 \\ \alpha(\mathrm{O}) = 7.31 \times 10^{-8} \ 15; \ \alpha(\mathrm{N}+) = 1.245 \times 10^{-5} \ 18 \\ \mathrm{B(E2)(W.u.)} = 14 \ +5 - 14; \ \mathrm{B(M3)(W.u.)} = 1.6 \times 10^{5} \\ + 20 - 16 \end{array}$
3150.28	3-	711.56 3	100 4	2438.746	3+	(E1+M2)	-0.07 [@] 4	0.000593 25	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000524 \ 22; \ \alpha(\mathbf{L}) = 5.7 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{M}) = 9.9 \times 10^{-6} \ 5; \ \alpha(\mathbf{N}) = 1.41 \times 10^{-6} \ 7 \\ &\alpha(\mathbf{O}) = 9.9 \times 10^{-8} \ 5; \ \alpha(\mathbf{N}+) = 1.51 \times 10^{-6} \ 7 \\ &\mathbf{B}(\mathbf{E}1)(\mathbf{W}.\mathbf{u}.) < 0.00100; \ \mathbf{B}(\mathbf{M}2)(\mathbf{W}.\mathbf{u}.) < 94 \\ &\text{Mult.: from } \gamma(\theta) \text{ in } (\mathbf{n},\mathbf{n}'\gamma) \text{ and } \Delta J^{\pi}. \\ &\mathbf{E}_{\gamma}: \text{ from } (\mathbf{n},\mathbf{n}'\gamma). \\ &\mathbf{I}_{\gamma}: \text{ from } (\mathbf{p},\mathbf{p}'\gamma). \end{aligned}$
		1252.98 7	66 7	1897.158	3-	M1+E2	+1.7 [@] 3	0.000427 6	$\alpha(K)=0.000363 \ 6; \ \alpha(L)=3.98\times10^{-5} \ 6; \ \alpha(M)=6.90\times10^{-6} \ 10; \ \alpha(N)=9.81\times10^{-7} \ 14 \ \alpha(O)=6.95\times10^{-8} \ 10; \ \alpha(N+)=1.70\times10^{-5} \ 4 \ B(E2)(W.u.)<4.2; \ B(M1)(W.u.)<0.0027 \ Mult.: D+Q \ from \ \gamma(\theta) \ in \ (n,n'\gamma); \ M1+E2 \ from \ RUL. \ E_{\gamma}: \ from \ (n,n'\gamma). \ L_{\gamma}: \ from \ (n,p'\gamma). \ L_{\gamma}: \ from \ (n,p'\gamma).$
3176.43	4+	1279.27 ^h 2	100.0 ^{<i>h</i>} 19	1897.158	3-	E1(+M2)&	-0.03 [@] 3	0.000277 5	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000163 \ 3; \ \alpha(\mathbf{L}) = 1.76 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{M}) = 3.05 \times 10^{-6} \ 6; \ \alpha(\mathbf{N}) = 4.34 \times 10^{-7} \ 8 \\ &\alpha(\mathbf{O}) = 3.09 \times 10^{-8} \ 6; \ \alpha(\mathbf{N}+) = 9.37 \times 10^{-5} \ 14 \\ &\mathbf{B}(\mathbf{E}1)(\mathbf{W}.\mathbf{u}.) = (0.0004 \ +3-4); \ \mathbf{B}(\mathbf{M}2)(\mathbf{W}.\mathbf{u}.) = (1.0 \\ &+21-10) \end{aligned}$
		1425.6 ^h 2	4.7 ^h 9	1750.497	2+	[E2]		0.000371 6	$\alpha(\mathbf{K})=0.000276 \ 4; \ \alpha(\mathbf{L})=3.02\times10^{-5} \ 5; \\ \alpha(\mathbf{M})=5.23\times10^{-6} \ 8; \ \alpha(\mathbf{N})=7.43\times10^{-7} \ 11 \\ \alpha(\mathbf{O})=5.27\times10^{-8} \ 8; \ \alpha(\mathbf{N}+)=5.96\times10^{-5} \ 9 \\ \mathbf{B}(\mathbf{E}2)(\mathbf{W},\mathbf{u},)=0.4 \ +4-4 $
3211.84	2+	1314.64 <i>4</i> 1461.5 <i>1</i> 3211.8 <i>1</i>	100 <i>11</i> 54 <i>11</i> 64 <i>18</i>	1897.158 1750.497 0.0	3 ⁻ 2 ⁺ 0 ⁺				
3243.61		574.74 <i>6</i> 1018.3 <i>2</i>	100 25 100 25	2668.82 2225.846	$\binom{2^+}{2^+}$				
3248.63	2+	1022.8 <i>1</i> 3248.56 <i>6</i>	22 5 100 <i>11</i>	2225.846 0.0	2 ⁺ 0 ⁺	[E2]		0.000950 14	$\alpha(\mathbf{K}) = 6.22 \times 10^{-5} \ 9; \ \alpha(\mathbf{L}) = 6.70 \times 10^{-6} \ 10; \\ \alpha(\mathbf{M}) = 1.159 \times 10^{-6} \ 17 \\ \alpha(\mathbf{O}) = 1.188 \times 10^{-8} \ 17; \ \alpha(\mathbf{N}+) = 0.000880 \ 13 \\ \alpha(\mathbf{M}) = 0$
3309.19	(4+,5+,6+)	132.9	62.5	3176.43	4+				B(E2)(W.u.)=0.26 +7-8

9

					Adopt	ed Level	s, Gammas (con	ntinued)
						γ (⁹⁶ Z	r) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	${ m J}_f^\pi$	Mult.	α	Comments
3309.19	$(4^+,5^+,6^+)$	189.4	25	3119.87	5-			
		226.82 8	100	3082.36	4+	E2&	0.0573	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0496 \ 7; \ \alpha(\mathbf{L}) = 0.00646 \ 9; \ \alpha(\mathbf{M}) = 0.001124 \ 16; \\ &\alpha(\mathbf{N}) = 0.0001541 \ 22; \ \alpha(\mathbf{O}) = 8.79 \times 10^{-6} \ 13 \\ &\alpha(\mathbf{N}+) = 0.0001629 \ 23 \end{aligned}$
3363.30		924.55 <i>4</i>	100	2438.746	3+			
3448.72	(2 ⁺)	780.2 <i>2</i> 1551.50 <i>8</i>	100 <i>19</i> 75 <i>19</i>	2668.82 1897.158	(2^+) 3 ⁻			
3450.16		781.2 ⁵ 2	100 [†] 15	2668.82	(2^{+})			
		1225.2 ^f 5	12 ^f 5	2225.846	2+			
		1699.6 ^f 4	60 ^f 15	1750.497	2+			
3472.14	2+	3472.07 7	100	0.0	0+	[E2]	0.001033 15	$\alpha(K)=5.59\times10^{-5} 8; \ \alpha(L)=6.01\times10^{-6} 9; \ \alpha(M)=1.040\times10^{-6} 15$ $\alpha(O)=1.066\times10^{-8} 15; \ \alpha(N+)=0.000971 14$ B(E2)(W.u.)=0.29 +4-8
3483.44	6+	173.7 ^e	9.4 ^e	3309.19	(4 ⁺ ,5 ⁺ ,6 ⁺)	(M1)	0.0452	α(K)=0.0397 6; α(L)=0.00456 7; α(M)=0.000793 12; α(N)=0.0001124 16; α(O)=7.81×10-6 11 α(N+)=0.0001202 17 B(M1)(W.u.)=0.014 5 Mult.: this γ is designated as E1 (1987StZX,1988StZS) without giving experimental details for this assignment. If this γ is a dipole, it should be M1.
		363.58 ^e 8	100 ^e	3119.87	5-	E1&	0.00290 4	$\alpha(K)=0.00256 \ 4; \ \alpha(L)=0.000283 \ 4; \ \alpha(M)=4.89\times10^{-5} \ 7; \\ \alpha(N)=6.92\times10^{-6} \ 10; \ \alpha(O)=4.77\times10^{-7} \ 7 \\ \alpha(N+)=7.39\times10^{-6} \ 11 \\ B(E1)(W,u)=0.00023 \ 9$
		401.0 ^e	1.17 ^e	3082.36	4+			
		626 ^e	3.1 ^e	2857.373	4+			I _γ : from 1987St12 Iin ⁹⁶ Y $β^-$ decay (9.6 s); 626γ is not shown in 1987StZX.
3509.16	2^{+}	1283.1 <i>1</i>	33 3	2225.846	2+			
		1612.1 <i>I</i>	100 3	1897.158	3 ⁻			
3556 18	2^{+}	1759.0 2	1/3	1/50.49/	2 ⁺ 0 ⁺	[E2]	0.001064.15	$\alpha(K) = 5.38 \times 10^{-5}$ s; $\alpha(I) = 5.78 \times 10^{-6}$ s; $\alpha(M) = 1.000 \times 10^{-6}$ IA
5550.18	2	5550.11 0	100	0.0	0	[E2]	0.001004 15	$\alpha(\mathbf{N}) = 5.58 \times 10^{-8}$, $\alpha(\mathbf{L}) = 5.78 \times 10^{-8}$, $\alpha(\mathbf{M}) = 1.000 \times 10^{-124}$ $\alpha(\mathbf{O}) = 1.026 \times 10^{-8}$ <i>15</i> ; $\alpha(\mathbf{N}+) = 0.001004$ <i>14</i> $\mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) = 0.24$ <i>6</i>
3577.62		1138.87 5	100	2438.746	3+			
3602.17	$(1,2^+)$	3602.1 2	100	0.0	0^+			
3020.73	$(1,2^+)$	3020.00 /	100	0.0	0 ⁺			
3749.38	$(1,2^{+})$ 4 ⁺	1852.2 <i>1</i>	100	0.0 1897.158	3-			

10

 $^{96}_{40}{
m Zr}_{56}$ -10

Т

					A	dopted Levels	, Gammas	(continued)	
						γ (⁹⁶ Zr	·) (continue	ed)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	J_f^{π}	Mult.	δ	α	Comments
3772.2	6+	289.0 ^e	1.49 ^e	3483.44	6+	(M1(+E2))	-0.4 5	0.014 4	α(K)=0.012 4; α(L)=0.0014 5; α(M)=0.00024 8; α(N)=3.5×10-5 11; α(O)=2.3×10-6 6 α(N+)=3.7×10-5 12 Mult.: from γ(θ) and ΔJπ. δ: from γ(θ) in 96y β- decay (9.6 s).
		462.7 ^e	0.75 ^e	3309.19	$(4^+, 5^+, 6^+)$				
		652.1 ^e	2.5 ^e	3119.87	5-	(E1)		0.000698 10	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000617 \ 9; \ \alpha(\mathbf{L}) = 6.75 \times 10^{-5} \ 10; \\ &\alpha(\mathbf{M}) = 1.169 \times 10^{-5} \ 17 \\ &\alpha(\mathbf{O}) = 1.165 \times 10^{-7} \ 17; \ \alpha(\mathbf{N}+) = 1.775 \times 10^{-6} \ 25 \\ &\text{Mult.: stretched D from } \gamma \gamma(\theta) \text{ in } \beta^{-} \text{ decay and } \Delta J^{\pi}. \end{aligned}$
		690.0°	1.94	3082.36	4'			0.000007.10	$(K) = 0.000720 + 1 = (L) = 0.14 + 10^{-5} + 2$
		914.8°	100°	2857.575	4.	(E2)		0.000827 12	$\begin{array}{l} \alpha(\mathbf{K}) = 0.000/29 \ 11; \ \alpha(\mathbf{L}) = 8.14 \times 10^{-5} \ 12; \\ \alpha(\mathbf{M}) = 1.412 \times 10^{-5} \ 20 \\ \alpha(\mathbf{O}) = 1.388 \times 10^{-7} \ 20; \ \alpha(\mathbf{N}+) = 2.14 \times 10^{-6} \ 3 \end{array}$
3857.48	2+	3857.4 2	100	0.0	0+	[E2]		0.001166 <i>17</i>	Mult.: stretched Q from $\gamma\gamma(\theta)$ in β -decay and ΔJ^{*} . $\alpha(K)=4.73\times10^{-5}$ 7; $\alpha(L)=5.08\times10^{-6}$ 8; $\alpha(M)=8.78\times10^{-7}$ 13; $\alpha(N)=1.252\times10^{-7}$ 18 $\alpha(O)=9.02\times10^{-9}$ 13; $\alpha(N+)=0.001113$ 16 B(F2)(W u)=0.46 + 12 - 18
3865.16		1426.4 <i>1</i>	100	2438.746	3+				B(E2)(11.4.)=0.10 +12 10
3924.6		804.7 ^e	100 ^e	3119.87	5-				
3947.19	$(1,2^{+})$	3947.1 <i>1</i>	100	0.0	0^{+}				
4014.07	5-	894.2 2	100	3119.87	5-				
4024.5?		2274.0 ¹ 8	100	1750.497	2+				
4037.89	$(1,2^{+})$	4037.8 2	100	0.0	0^{+}				
4126.3	(4^+)	1006.4 ^e	100	3119.87	5-				
4132.4	$(1,2^{+})$	4132.3 3	100	0.0	0^+				
4234.7	/	/51.5° 1114.6°	40°	2110.87	5 ⁻				
4258.0	2-	1114.0 1222 $4f_{-4}$	100 f	2025 55	5 0 ⁺				
4238.0	$(5^+ 6^+)$	1552.47 4	85	2923.33	0* 6+				
4201.5	(5,0)	778.0	100	3483.44	6 ⁺				
		1179.0	23	3082.36	4 ⁺				
4389.5	8+	154.7 ^e	0.8 ^e	4234.7	7-	[E1]		0.0317	$\alpha(K)=0.0280 \ 4; \ \alpha(L)=0.00313 \ 5; \ \alpha(M)=0.000540 \ 8; \ \alpha(N)=7.57\times10^{-5} \ 11; \ \alpha(O)=4.99\times10^{-6} \ 7 \ \alpha(N+)=8.07\times10^{-5} \ 12 \ R(E1)(Wu) = 4.0\times10^{-6} \ 4$
		617.2 ^e	100 ^e	3772.2	6+	E2		0.00228 4	$\alpha(K)=0.00201 \ 3; \ \alpha(L)=0.000230 \ 4; \ \alpha(M)=3.99\times10^{-5} \ 6;$

From ENSDF

 $^{96}_{40}\mathrm{Zr}_{56}$ -11

							Adopted	Levels, Gamm	as (continued)
								γ (⁹⁶ Zr) (contin	ued)
	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.	α	Comments
	4389.5	8+	906.2 ^e	36.8 ^e	3483.44	6+	E2	0.000846 12	$\begin{aligned} &\alpha(N)=5.61\times10^{-6}\ 8;\ \alpha(O)=3.78\times10^{-7}\ 6\\ &\alpha(N+)=5.99\times10^{-6}\ 9\\ &B(E2)(W.u.)=1.38\ 11\\ &Mult.:\ stretched\ Q\ from\ \gamma\gamma(\theta)\ in\ \beta^{-}\ decay;\ E2\ from\ RUL.\\ &\alpha(K)=0.000746\ 11;\ \alpha(L)=8.33\times10^{-5}\ 12;\ \alpha(M)=1.445\times10^{-5}\ 21\\ &\alpha(O)=1.419\times10^{-7}\ 20;\ \alpha(N+)=2.19\times10^{-6}\ 3\\ &B(E2)(W.u.)=0.075\ 6\\ &Mult.:\ stretched\ Q\ from\ \gamma\gamma(\theta)\ in\ \beta^{-}\ decay;\ E2\ from\ RUL. \end{aligned}$
	4512.5	$(1,2^+)$	4512.4 7	100	0.0	0^+			
	4570.1	(5 ⁻ ,6 ⁺)	335.4°	60°	4234.7	/- 1±			
	4689.7 4737.5 4751.5 4757.2	(1,2 ⁺) (7,8 ⁺)	1712.7 ⁴ 455.0 4737.4 8 979.2 522.6	100 100 100 100 100	2857.373 4234.7 0.0 3772.2 4234.7	4 ⁺ 7 ⁻ 0 ⁺ 6 ⁺ 7 ⁻			
	4837.75	$(1^{-},2^{+})$	1625.8 ^{<i>f</i>} 4	99 5 30	3211.84	2+			
		())	1912.1 ^{<i>f</i>} 4	35 f 8	2925.55	0^{+}			
			2940.0 f 4	59 f 15	1897.158	3-			
			3086.9 ^f 7	45 f 7	1750.497	2+			
			3257.4 ^{<i>f</i>} 7	36 ^f 8	1581.64	0^{+}			
			4839.2 ^f 8	100 ^f 19	0.0	0^{+}			
	4845.4		719.1 ^e	100 ^e	4126.3	(4 ⁺)			
	4881.9?		1956.3 ¹ 10	100	2925.55	0+			
	4895.2	$(1,2^+)$ (10^+)	4895.1J 7 517.4	100	0.0 /389.5	0^+ 8 ⁺			
	4914.1?	(10^{-}) (1.2^{+})	4914.0^{i} 10	100	0.0	0^{+}			
	4929.1	$(1,2^+)$	4929.0 ^{<i>f</i>} 9	100 f	0.0	0^{+}			
	5066.2	(7+,8+)	314.7	38.9	4751.5	$(7,8^{+})$			
			676.7 804 0	22.2	4389.5	8^+ (5 ⁺ 6 ⁺)			
			1582.9	100	4201.5 3483.44	$(3,0^{+})$ 6^{+}			
	5117.8		728.3	100	4389.5	8+			
	5196.9?	(1 a b)	3615.2 ⁱ 10	100	1581.64	0^+			
	5228.5 5235 3	$(1,2^+)$ (7.8^+)	5228.3 6 845.8	100	0.0 4389 5	0^+ 8 ⁺			
	5255.5	(7,0)	1463.0	71	3772.2	6 ⁺			
	5272.0	$(1,2^+)$	5271.8 6	100	0.0	0^{+}			
	5312.5		3730.8 7	100	1581.64	0^{+}			
1									

⁹⁶₄₀Zr₅₆-12

From ENSDF

⁹⁶₄₀Zr₅₆-12

Т

γ ⁽⁹⁶Zr) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_{f}^{π}
5408.3		3826.6 7	100	1581.64	0^{+}	5701.3		4119.6 6	100	1581.64	0+
5443.1	$(1,2^+)$	3861.7 <mark>5</mark> 6	100 f 11	1581.64	0^{+}	5719.1	$(1,2^+)$	5718.9 8	100	0.0	0^{+}
		5442.5 ^f 7	36 5 5	0.0	0^{+}	5737.7	(11^{+})	830.8	100	4906.9	(10^{+})
5483.8	(10^{+})	1094.3	100	4389.5	8+	5741.5?		4159.8 ⁱ 10	100	1581.64	0^{+}
5502.2?	$(1,2^{+})$	5502.0 ⁱ 8	100	0.0	0^{+}	5783.1	$(1,2^+)$	5782.9 8	100	0.0	0^{+}
5507.6	$(7^+, 8^+)$	441.4	27	5066.2	$(7^+, 8^+)$	5804.5	$(1,2^+)$	5804.3 7	100	0.0	0^{+}
		600.7	33	4906.9	(10^{+})	5838.3	$(1,2^+)$	5838.1 10	100	0.0	0^{+}
		750.5	33	4757.2		5847.5	$(1,2^+)$	5847.3 6	100	0.0	0^{+}
		756.1	73	4751.5	$(7,8^{+})$	5899.8		1510.3	100	4389.5	8+
		1118.1	100	4389.5	8+	5914.7	$(1,2^+)$	4162.9 10	100 19	1750.497	2+
		1246.3	60	4261.3	$(5^+, 6^+)$			4334.2 ⁱ 15	19 5	1581.64	0^{+}
		1735.3	80	3772.2	6+			5914.9 8	97 <i>17</i>	0.0	0^{+}
5538.9	$(1,2^+)$	5538.7 6	100	0.0	0^{+}	5934.6	$(1,2^+)$	5934.4 6	100	0.0	0^{+}
5551.6	$(1,2^+)$	5551.4 6	100	0.0	0^{+}	6143.6?	$(1,2^+)$	4562.7 ⁱ 10	6.×10 ¹ 3	1581.64	0^{+}
5573.9	$(1,2^+)$	3992.2 8	73	1581.64	0^{+}			6141.6 14	$1.0 \times 10^2 \ 3$	0.0	0^{+}
		5573.7 8	100	0.0	0^{+}	6231.6	$(1,2^+)$	6231.4 11	100	0.0	0^{+}
5601.5	$(1,2^+)$	5601.3 6	100	0.0	0^{+}	6245.7	(12^{+})	508.0	100	5737.7	(11^{+})
5625.9		4044.2 10	100	1581.64	0^{+}	6460.5	(13^{+})	214.8	100	6245.7	(12^{+})
5628.9		1239.4	100	4389.5	8+	6821.3	(14^{+})	360.8	100	6460.5	(13^{+})
5652.9?		4071.2 ⁱ 10	100	1581.64	0^{+}						

[†] From the following data sets: ${}^{96}Y \beta^{-}$ decay (5.43 s),(9.6 s), (n,n' γ), (p,p' γ).

[‡] From difference in energies of initial and final levels.

[#] ce data and no γ observed (1988Ma01,1990Ma03,1986HeZP, 1988HeZM).

[@] From $\gamma(\theta)$ in $(n,n'\gamma)$.

& From ce data in $(t,p\gamma)$.

^{*a*} From $\gamma(\theta)$ in $(n,n'\gamma)$ and RUL.

^b From (n,n' γ); I γ (329:475:644:2226)=16.1 6:58.4 22:21.9 7:100 6 (β ⁻ decay 5.34 s) 9.5:56:27:100 (β ⁻ decay 9.6 s), and 7.6 6:44.4 12:22.8 8:100 4 (p,p' γ).

^c From (n,n' γ); I γ (443:772:919)=-:20 3:100 6 (β ⁻ decay 5.34 s), -:23.0 16:100 3 (p,p' γ).

^d From $(n,n'\gamma)$; $I\gamma(632:962:1107)=16:8:100 \ (\beta^{-} \text{ decay } 9.6 \text{ s}), 16:-:100 \ (t,p\gamma), 11.5 \ 22:-:100 \ 4 \ (p,p'\gamma).$

^{*e*} From 96 Y β^{-} decay (9.6 s).

^f From ⁹⁶Y β^- decay (5.34 s).

^g From ${}^{96}Zr(n,n'\gamma)$.

^{*h*} From ⁹⁶Zr(p,p' γ).

^{*i*} Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{96}_{40}{
m Zr}_{56}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{96}_{40}{
m Zr}_{56}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

⁹⁶₄₀Zr₅₆

17

⁹⁶₄₀Zr₅₆-17

From ENSDF

 $^{96}_{40}\mathrm{Zr}_{56}$ -17

 $^{96}_{40}{
m Zr}_{56}$