176 Yb(28 Si,X γ) 2005Pa48

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 109, 2501 (2008)	1-Apr-2008						

Includes 176 Yb(31 P,x γ).

¹⁷⁶Yb(²⁸Si,x γ): E=145 MeV. Measured E γ , I γ , $\gamma\gamma$ with the EUROGAM II array, consisting of 54 escape-suppressed Ge

detectors, 30 of which were of large-volume coaxial design with the remaining 24 being of the four-element clover type.

 176 Yb(31 P,x γ): E=152 MeV. Measured E γ , I γ , $\gamma\gamma$ with the EUROBALL IV array, comprising 15 cluster, 26 clover and 30

tapered single-crystal Ge detectors. Each cluster detector consisted of seven closely-packed, large-volume encapsulated Ge crystals.

96Zr Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	0^{+}	
1750.4 3	2+	
1896.8 4	3-	
2857.2 4	4+	
3081.8 5	4+	
3119.2 5	5-	
3308.8 6	$(5^+, 6^+)$	J^{π} : quoted without parentheses in level scheme figure 8 of 2005Pa48.
3482.9 5	6+	
3772.3 5	6+	
4234.0 5	7-	
4389.8 <i>5</i>	8+	
4570.2 6		
4689.5 6		
4907.4 6	(10^{+})	
5484.1 6	(10^{+})	
5738.2 7	(11^{+})	
6246.2 8	(12^{+})	
6461.0 8	(13+)	
6821.8 9	(14^{+})	

 † From least-squares fit to Ey's; $\Delta E\gamma{=}0.3$ keV assumed for each transition.

[‡] Authors' tentative assignments based on well known low-spin states from literature, comparison with theoretical calculations and by assuming spin values increase with excitation energy of levels. Tentative assignments are supported by comparison of corresponding states in neighboring Zr isotopes using a weak-coupling scheme.

 $\gamma(^{96}\mathrm{Zr})$

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	
146.4	66 3	1896.8	3-	1750.4 2+	751.1	5.1 7	4234.0	7-	3482.9 6+	
214.8	16.1 8	6461.0	(13^{+})	6246.2 (12 ⁺)	830.8	24.0 17	5738.2	(11^{+})	4907.4 (10 ⁺)	
227.0	3.2 10	3308.8	$(5^+, 6^+)$	3081.8 4+	906.9	19.3 <i>13</i>	4389.8	8+	3482.9 6+	
336.2	4.3 5	4570.2		4234.0 7-	915.1	43 4	3772.3	6+	2857.2 4+	
360.8	9.7 12	6821.8	(14^{+})	6461.0 (13 ⁺)	1094.3	8.7 12	5484.1	(10^{+})	4389.8 8+	
363.7	28.7 12	3482.9	6+	3119.2 5-	1106.7	45 <i>4</i>	2857.2	4+	1750.4 2+	
455.5	5.2 6	4689.5		4234.0 7-	1114.8	13.7 12	4234.0	7-	3119.2 5-	
508.0	19.9 <i>12</i>	6246.2	(12^{+})	5738.2 (11 ⁺)	1185.0	8.3 10	3081.8	4+	1896.8 3-	
517.6	29 <i>3</i>	4907.4	(10^{+})	4389.8 8+	1222.5	55 4	3119.2	5-	1896.8 3-	
617.4	37.6 14	4389.8	8+	3772.3 6+	1750.4	100	1750.4	2+	$0.0 \ 0^+$	

[†] Assignment of transitions to ⁹⁶Zr based on coincidence of γ rays with those of known transitions from complementary fission fragments, ¹⁰²Ru and ¹⁰⁵Rh isotopes, and/or γ rays of ⁹⁶Zr already known in the literature.

 $^{96}_{40}{
m Zr}_{56}$