History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 109, 2501 (2008)	1-Apr-2008				

Parent: ⁹⁶Sr: E=0; $J^{\pi}=0^+$; $T_{1/2}=1.07$ s *1*; $Q(\beta^-)=5415$ *12*; $\%\beta^-$ decay=100.0

Measured: γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, ce (1981Ju02); γ , $\beta\gamma$ ((1975Ba36,1975Gu03); γ (1979Bo26); $\beta\gamma$ (1980De02,1979Pe17,1978St02). α : Additional information 1.

 α : Additional information 2.

 α : Additional information 3.

⁹⁶Y Levels

 β -decays of ⁹⁶Y were reported with two half-lives. However, it is not known which is due to the ground state, or how large the excitation energy is.

E(level)	J^{π}	$T_{1/2}^{\dagger}$
0.0	0-	5.34 s 5
122.297 <i>3</i>	1-	203 ps 6
652.29 6	2-	≤21 ps
718.70 8	$1^{(+)}, 2^{(+)}$	
931.70 <i>3</i>	1^{+}	≤21 ps
1287.89 17	0,1	
1983.58 18	1+	

[†] $T_{1/2}$ <0.5 ns has been found for all γ 's.

 β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments
(3431 <i>12</i>)	1983.58	3.4 <i>4</i>	4.92 6	av $E\beta$ =1471.6 58
(4127 <i>12</i>)	1287.89	0.27 <i>9</i>	6.37 <i>15</i>	av $E\beta$ =1804.3 58
(4483 <i>12</i>)	931.70	92 <i>3</i>	3.997 <i>16</i>	av $E\beta$ =1975.2 58
$(4696^{\#} 12)$	718.70	0.13 22	6.9 8	av $E\beta = 2077.6 58$
$(4763^{\#} 12)$	652.29	0.5 6	8.1 ¹ <i>u</i> 6	av $E\beta = 2103.7 58$
$(5293^{\#} 12)$	122.297	2.4 29	5.9 6	av $E\beta = 2364.5 58$
(5415 [#] 12)	0.0	<2.6	>5.9	av $E\beta = 2423.4 58$ $I\beta^-$: if log $ft > 5.9$.

[†] From intensity imbalance.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

 $\gamma(^{96}{\rm Y})$

Iy normalization: If %I β (g.s.)=1.3 13 as deduced from log ft>5.9.

Ν

${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^{†@}	δ&	α	Comments
122.297 [#] 3	100.00 5	122.297	1-	0.0	0-	M1		0.1043	$\alpha(K)=0.0917 \ 13; \ \alpha(L)=0.01053 \ 15; \alpha(M)=0.00180 \ 3; \ \alpha(N)=0.000242 \ 4; \alpha(O)=1.650\times10^{-5} \ 23 \alpha(N+)=0.000258 \ 4 Mult: \ \alpha(K)=xp=0.088 \ 10$
213.0 <i>I</i>	1.0 2	931.70	1+	718.70	1 ⁽⁺⁾ ,2 ⁽⁺⁾	M1(+E2)	0.0 4	0.024 6	$\alpha(K) = 0.021 \ 6; \ \alpha(L) = 0.0024 \ 8; \ \alpha(M) = 0.00041$ $13; \ \alpha(N) = 5.5 \times 10^{-5} \ 16; \ \alpha(O) = 3.8 \times 10^{-6} \ 8$ $\alpha(N+) = 5.8 \times 10^{-5} \ 17$ Mult: $\alpha(K) \exp = 0.021 \ 6.$
279.4 1	10.8 5	931.70	1+	652.29	2-	E1+M2	-0.05 2	0.00566 15	α(K)exp only. α(K)=0.00500 13; α(L)=0.000550 15; α(M)=9.4×10 ⁻⁵ 3; α(N)=1.25×10 ⁻⁵ 4; α(O)=8.45×10 ⁻⁷ 24 α(N+)=1.34×10 ⁻⁵ 4 Mult.: α(K)exp=0.0045 4.
356.0 2	0.7 1	1287.89	0,1	931.70	1^{+}				
530.0 1	11.7 5	652.29	2-	122.297	1-	M1+E2	-0.11 +3-4	0.00254 4	$\alpha(K)=0.00224 4; \alpha(L)=0.000247 4;$ $\alpha(M)=4.22\times10^{-5} 6; \alpha(N)=5.68\times10^{-6} 9;$ $\alpha(O)=3.98\times10^{-7} 6$ $\alpha(N+)=6.08\times10^{-6} 9$ Mult.: $\alpha(K)\exp=0.0023 4.$
596.4 1	1.2.2	718.70	$1^{(+)}.2^{(+)}$	122.297	1-				
652.3 1	0.6 2	652.29	2-	0.0	0-	[E2]		0.00183 3	α (K)=0.001612 23; α (L)=0.000182 3; α (M)=3.10×10 ⁻⁵ 5; α (N)=4.14×10 ⁻⁶ 6; α (O)=2.78×10 ⁻⁷ 4 α (N+)=4.42×10 ⁻⁶ 7
695.4 <i>3</i>	0.45 5	1983.58	1+	1287.89	0,1				
809.40 [#] 3	94.0 <i>30</i>	931.70	1+	122.297	1-	E1(+M2)	0.00 1	4.1e-4 6	$\alpha(K)=0.000362 \ 5; \ \alpha(L)=3.91\times10^{-5} \ 6; \\ \alpha(M)=6.67\times10^{-6} \ 10; \ \alpha(N)=8.97\times10^{-7} \ 13; \\ \alpha(O)=6.26\times10^{-8} \ 9 \\ \alpha(N+)=9.60\times10^{-7} \ 14 \\ Mult.: \ \alpha(K)exp=0.00036 \ 4. \\ I\gamma=62\% \ (1989WaZV).$
931.7 <i>1</i>	15.4 10	931.70	1+	0.0	0^{-}				/
1052.6 7	0.5 2	1983.58	1^{+}	931.70	1+				
1166.0 5	0.10 5	1287.89	0,1	122.297	1-				
1331.6 4	0.8 2	1983.58	1+	652.29	2-				

⁹⁶₃₉Y₅₇-2

$\gamma(^{96}\text{Y})$ (continued)

Eγ‡	I_{γ}^{a}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
1861.3 5	0.2 1	1983.58	1^{+}	122.297	1-
1983.5 <i>3</i>	2.5 3	1983.58	1^{+}	0.0	0^{-}

[†] $\alpha(K)$ exp were normalized to $\alpha(K)(E2)$ for 815 γ in ⁹⁶Sr (1981Ju02). [‡] From 1981Ju02 if not noted otherwise. [#] Measured with a high-resolution curved-crystal spectrometer (1979Bo26). [@] From $\gamma\gamma(\theta)$ and $\alpha(K)$ exp (1981Ju02). [&] From $\gamma\gamma(\theta)$ (1981Ju02) if not noted otherwise. ^a For absolute intensity per 100 decays, multiply by 0.765 *12*.

96 Sr β^- decay 1981Ju02

Decay Scheme

