	Hist	ory			
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 109,2501 (2008)	1-Apr-2008		

$Q(\beta^{-})=5412 \ 10; \ S(n)=5879 \ 11; \ S(p)=14325 \ 22; \ Q(\alpha)=-6585 \ 10$ 2012Wa38

Note: Current evaluation has used the following Q record 5415 125874 1414280 11-6582 10 2006Ha03. $Q(\beta^-)=5415 \ I2$, from mass excess (^{96}Sr)=-72926 *I0* (2006Ha03) and mass excess (^{96}Y)=-78341 7 (2006Ha03). Sn=5874 *I4*, from mass excess (^{95}Sr)=-75123 *I0* (2006Ha03). Q(β^- n)=4156 *I2*, using mass excess (^{95}Y)=-81235 7 (2006Ha03). Q(α)=-6582 *I0*, using mass excess (^{92}Kr)=-68769.3 2.7 (2006De36). S(p)=14280 *I1*, using mass excess (^{95}Rb)=-65935 4 (2007Ra23). The 2003Au03 values are Q(β^-)=5408 *I8*, S(n)=5890 *30*, S(p)=14370 *30*, Q(α)=-6580 *30*. α : Additional information 1.

⁹⁶Sr Levels

Cross Reference (XREF) Flags

		A B C	⁹⁶ Rb β ⁻ ⁹⁷ Rb β ⁻ ²³⁵ U(n,F	decay D $^{238}U(\alpha,F\gamma)$ n decay E ^{248}Cm SF decay F), $^{238}U(n,F)$ F $^{98}Rb \beta^{-}2n$ decay (114 ms)
E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0^{\dagger}	0^{+}	1.07 s <i>1</i>	ABCDEF	%β ⁻ =100
+				$\begin{array}{l} T_{1/2}: \mbox{ from 1990Ma03. Others: } 1.04 \mbox{ s } I \ (1988Ma01), \ 1.10 \mbox{ s } 2 \ (1979En02), \\ 1.015 \mbox{ s } I9 \ (1978Wo09), \ 1.06 \mbox{ s } 4 \ (1975Ba36), \ 1.0 \mbox{ s } I \ (1976SiZU). \\ < r^2 > ^{1/2} \ (charge) = 4.361 \ 11 \ (2004An14). \end{array}$
814.93 7	2+	4.8 ps 28	ABCDE	J^{π} : $\gamma\gamma(\theta)$ for cascade 414 γ -815 γ uniquely determined J=2 and J=0 for
				T _{1/2} : from 1991MaZS. Others: 4.5 ps 24 (1991Ma05), see also 1989Ma38 in β^- Decay. E(level): 815.5 in 1991MaZS in β^- Decay.
1229.28 [‡] 10	0^{+}	115 ps <i>12</i>	AB E	J^{π} : see comment with 814.9 level.
		•		$T_{1/2}$: from 1991Ma05 in β^- Decay.
1464.6 5	0^{+}	6.7 ns 10	AB E	J^{π} : J=0-2-0 for 650 γ -815 γ cascade from $\gamma\gamma(\theta)$. RUL.
1506.04	0 ⁺			$I_{1/2}$: from 1980JUZY.
1506.84* 9	21	$\leq 6.2 \text{ ps}$	AB DE	J [*] : γ to 2' is M1+E2, γ to 0'. $\gamma\gamma(\theta)$. To a: from 1001Ma05
1628.19 10	(2^{+})		AB DE	J^{π} : $\gamma\gamma(\theta)$ suggests J=2, γ to 0 ⁺ .
1792.77 [†] 11	4 ⁺ @		AB DE	
1852.14 10	(3)		A	J^{π} : 1,3 from $\gamma\gamma(\theta)$. No γ to 0^+ .
1975.73 [‡] 11	$(4^+)^{@}$		AB DE	
1994.98 <i>13</i>	$(1^+, 2^+)$		AB	J ^{π} : γ to 0 ⁺ . If J=1, the large quadrupole mixing determines π =+.
2083.98 13	$(1,2^+)$		AB	J^{π} : log <i>ft</i> =6.3 from 2 ⁺ 9 ⁶ Rb. γ to 0 ⁺ .
2113.41 13			AB	
2120.07 21	$(4^+)^{\textcircled{0}}$	10.4	AB DE	
2150.84 12	(1 ⁺ ,2,3 ⁺)	<10.4 ps	AB E	J^{n} : 1,2,3 from $\gamma\gamma(\theta)$. If J=1 or 3, the large quadrupole mixing determines π =+.
2217 26 16	2		Δ	$I_{1/2}$: from 1991 Ma05. I^{π} : γ to 0^+ D γ to 2^+ $\gamma\gamma(\theta)$
2269.54? 21	-		A	
2307.54 11	$(1,2^+)$		AB	J^{π} : γ 's to (3) and 0 ⁺ .
2407.41 18			AB	
2412.00 <i>18</i> 2443.65 <i>13</i>	$(1,2^{+})$		A A	J^{π} : log <i>ft</i> =6.5 from 2 ^{+ 96} Rb; γ to 0 ⁺ .

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁹⁶Sr Levels (continued)

E(level)	J^{π}	T _{1/2}	XREF	Comments
E(level) 2466.6 [‡] 6 2493.05 21 2493.05 21 2525.53 19 2529.3 7 2576.25 21 2703.73 15 2719.70 16 2785.8 [†] 6 2880.5 3 2899.4 7 3009.8 10 3064.80 16 3126.0 [‡] 10 3195.76 21 3238.9 9 3244.9? 3 3328.9 6 3446.3? 4 3524.5 10 (3604.7 [#] 8 (3755.4 3	$ \frac{J^{\pi}}{6^{+})^{(\theta)}} $ $ \frac{6^{+}}{6^{+})^{(\theta)}} $ $ \frac{8^{+}}{6^{+})^{(\theta)}} $ $ \frac{9^{+}}{6^{+})^{(\theta)}} $ $ \frac{1}{1,2^{+})} $	T _{1/2}	XREF DE DE A A A A A A A A A A A A A A A A A	Comments $T_{1/2}$: from $\gamma(t)$ in ²⁴⁸ Cm SF decay. J ^{π} : log ft=6.2 from 2 ⁺ ⁹⁶ Rb; γ to 0 ⁺ .
$3604.7^{\#} 8 \qquad (() 3755.4 \ 3 () 3755.4 \ 3 () 3851.3^{\#} \ 13 \\ 3887.0^{\ddagger} \ 14 \qquad () 4048.7? \ 4 \\ 4131.1^{\#} \ 16 \\ 4133.2 \ 12 \\ 4322.6? \ 5 \\ 4330.4 \ 14 \\ 4443.1^{\#} \ 19 \\ 4725.5^{\ddagger} \ 17 \qquad () \\ 4785.1?^{\#} \ 21 \\ 4799.4? \ 4 \\ 5049.4? \ 10 \\ 5090.9? \ 5 \\ 5132.8 \ 5 \\ 5158.7 \ 4 \\ 5168.5 \ 4 \qquad () \\ 5597.5^{\ddagger} \ 20 \qquad () \\ 5597.5^{\ddagger} \ 22 \qquad () \\ 5597.5^{\ddagger} \$			E A DE A E C C C C C C C C C C C C C	J ^{π} : log <i>ft</i> =6.2 from 2 ⁺ ⁹⁶ Rb; γ to 0 ⁺ . J ^{π} : log <i>ft</i> =5.9 from 2 ⁺ ⁹⁸ Rb; γ to 0 ⁺ .

[†] Band(A): g.s. band. [‡] Band(B): Q₀=2.20 *15*, β_2 =0.25 *2* (²⁴⁸Cm SF decay). [#] Band(C): Possible rotational band based on (6⁺). [@] From $\gamma\gamma(\theta)$, band pattern in high-spin data from ²³⁸U(α ,F γ) and ²⁴⁸Cm SF decay.

Adopted Levels, Gammas (continued))			
							γ (⁹⁶ Sr	<u>)</u>		
E _i (level)	\mathbf{J}_i^{π}	Eγ	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α	$I_{(\gamma+ce)}$	Comments
814.93	2+	815.0 1	100	0.0	0+	E2		0.000949 14		$\alpha(K)=0.000839 \ 12; \ \alpha(L)=9.23\times 10^{-5} \ 13; \ \alpha(M)=1.550\times 10^{-5} \ 22$
1229.28	0+	414.3 <i>1</i>	100	814.93	2+	E2		0.00659 10		$\alpha(O)=1.239\times10^{-7} \ 18; \ \alpha(N+)=2.06\times10^{-6} \\ B(E2)(W.u.)=13 \ 8 \\ \alpha(K)=0.00580 \ 9; \ \alpha(L)=0.000669 \ 10; \\ \alpha(M)=0.0001123 \ 16; \ \alpha(N)=1.386\times10^{-5} \ 20 \\ \alpha(O)=8 \ 37\times10^{-7} \ 12; \ \alpha(N+.)=1 \ 470\times10^{-5} \\ \alpha(N+.)=1 \ 470\times10^{-5} \ 10^{$
1464.6	0^{+}	235.1 5		1229.28	0+	E0			0.60 5	B(E2)(W.u.)=15.3 <i>16</i> Mult.: transition highly converted since no corresponding γ was seen. T _{1/2} =6.7 ns excludes
		650.5 10	100 25	814.93	2+	E2		0.00172 3		high mult. ρ =0.43 5 (1980JuZY). α (K)=0.001517 23; α (L)=0.0001691 25; α (M)=2.84×10 ⁻⁵ 5; α (N)=3.54×10 ⁻⁶ 6; α (M)=2.23×10 ⁻⁷ 4
1506.84	2+	692.0 <i>1</i>	100 6	814.93	2+	M1+E2	+2.0 11	0.00141 8		$\alpha(O)=2.23\times10^{-4}$ $\alpha(N+)=3.76\times10^{-6} 6$ B(E2)(W.u.)=0.028 11 $\alpha(K)=0.00125 7; \alpha(L)=0.000138 9;$ $\alpha(M)=2.32\times10^{-5} 14; \alpha(N)=2.89\times10^{-6} 17;$ $\alpha(O)=1.84\times10^{-7} 9$
		1506.9 2	54 <i>4</i>	0.0	0+					$\begin{array}{l} \alpha(\mathrm{N+}){=}3.08{\times}10^{-6} \ 18\\ \mathrm{B(E2)(W.u.){>}8.9; \ B(M1)(W.u.){>}0.00017}\\ \mathrm{I}_{\gamma}{:} \ \text{weighted average of 56 5 (}^{96}\mathrm{Rb}\ \beta^{-}\ \mathrm{decay)} \ \mathrm{and}\\ \ 50\ 8\ (^{248}\mathrm{Cm}\ \mathrm{SF}\ \mathrm{decay}). \end{array}$
1628.19	(2+)	398.9 <i>1</i> 813.2 2	5.3 <i>4</i> 100 <i>11</i>	1229.28 814.93	0+ 2+	(M1+E2)	+0.58 +17-12	0.000894 16		$\alpha(K)=0.000792 \ 14; \ \alpha(L)=8.60\times10^{-5} \ 16; \\ \alpha(M)=1.44\times10^{-5} \ 3; \ \alpha(N)=1.81\times10^{-6} \ 4$
		1628 2 2	12.2.11	0.0	0+					α (O)=1.183×10 ⁻⁷ 19; α (N+)=1.93×10 ⁻⁶ 4
1792.77	4+	977.8 1	100	814.93	2+	E2 [@]		0.000610 9		$\alpha(K)=0.000540 \ 8; \ \alpha(L)=5.89\times10^{-5} \ 9;$ $\alpha(M)=9.88\times10^{-6} \ 14; \ \alpha(N)=1.238\times10^{-6} \ 18$ $\alpha(O)=7.99\times10^{-8} \ 12; \ \alpha(N+)=1.318\times10^{-6} \ 19$
1852.14	(3)	345.4 2	2.5 5	1506.84	$2^+_{2^+}$					
1975.73	(4+)	347.3 2	25 <i>4</i>	814.93 1628.19	2 ⁺ (2 ⁺)					I _γ : weighted average of 24 3 (⁹⁶ Rb β^- decay), 22 4 (²³⁸ U(α ,Fγ)) and 42 8 (²⁴⁸ Cm SF decay).
		469.0 1	100 10	1506.84	2+	@				
		1160.6 2	55 6	814.93	2+	E2 ^w		0.000417 6		$\alpha(K)=0.000366\ 6;\ \alpha(L)=3.97\times10^{-5}\ 6;$

ω

						Adopted Levels, Gammas (continued)						
							$\gamma(^{96}\text{Sr})$ (continued)				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α	Comments			
									α (M)=6.66×10 ⁻⁶ 10; α (N)=8.36×10 ⁻⁷ 12 α (O)=5.43×10 ⁻⁸ 8; α (N+)=4.53×10 ⁻⁶ 7 I _{γ} : weighted average of 70 6 (⁹⁶ Rb β ⁻ decay), 50 3 (²³⁸ U(α ,F γ)) and 67 8 (²⁴⁸ Cm SF decay).			
1994.98	$(1^+, 2^+)$	366.8 2	2.6 5	1628.19	(2^+)							
		1180.0 <i>2</i>	5.0 7 100 7	1229.28 814.93	0^+ 2 ⁺	M1+E2		0.000403 6	$\alpha(K)=0.000353 5; \alpha(L)=3.80\times10^{-5} 6; \alpha(M)=6.38\times10^{-6} 10; \alpha(N)=8.02\times10^{-7} 12$			
									$\alpha(0)=5.25\times10^{-6}$ 8; $\alpha(N+)=5.7\times10^{-6}$ 7 δ : if $I(1994.98 \text{ level})=1$ $\delta=-0.53\pm75-20$ from β^- Decay			
2083.98	(1,2 ⁺)	1994.8 <i>3</i> 577.3 <i>2</i> 854.5 <i>3</i>	10.5 <i>12</i> 15.6 <i>21</i> 51 <i>4</i>	0.0 1506.84 1229.28	0^+ 2^+ 0^+							
2113.41		1269.0 2 2083.9 3 320.6 2 485.2 2	27 3 100 <i>11</i> 15.3 <i>18</i> 55 6	814.93 0.0 1792.77 1628.19	2^+ 0^+ 4^+ (2^+)							
2120.07	(4 ⁺)	606.6 2 1298.5 2 328.1	90 9 100 <i>10</i> 10 <i>4</i>	1506.84 814.93 1792.77	2+ 2+ 4+				E_{γ} : reported only by ²⁴⁸ Cm SF decay.			
		1305.1 2	100	814.93	2+				,			
2150.84	$(1^+, 2, 3^+)$	644.0 <i>I</i> 1335 9 2	40 3	1506.84 814.93	2^+ 2^+				I_{γ} : other 100 20 (²⁴⁸ Cm SF decay).			
2217.26	2	987.9 2 1402.4 2	8.3 <i>11</i> 100 <i>9</i>	1229.28 814.93		D+(Q)	+0.7 8		r_{γ} . oner so 20 (\sim cm Sr decay).			
2269.54? 2307.54	(1,2+)	1454.6 ^b 2 455.5 <i>1</i> 1492.6 2	100 32 3 52 5	814.93 1852.14 814.93	2 ⁺ (3) 2 ⁺							
2407.41		2307.1 2 555.4 3 1592.4 2	100 <i>10</i> 100 8 70 7	0.0 1852.14 814.93	0^+ (3) 2^+							
2412.00	$(1,2^+)$	1596.9 <i>4</i> 2412.0 <i>2</i>	11.0 20 100 10	814.93 0.0	$\frac{1}{2^{+}}$ 0 ⁺							
2443.65	((+))	936.8 <i>I</i>	100	1506.84	2^+							
2400.0	(0')	491.0 ^a 673.8 ^a	/1 6 100 6	1975.73	(4 ') 4 ⁺	E2 [@]		0.001561 22	$\alpha(K)=0.001378\ 20;\ \alpha(L)=0.0001533\ 22;\ \alpha(M)=2.57\times10^{-5}\ 4$			
2481.0		361.0 ^a 688.2 ^a	100 25 75 25	2120.07	(4 ⁺) 4 ⁺				$\alpha(0)=2.03\times10^{-5}$; $\alpha(N+)=5.41\times10^{-5}$			
2493.05		1678.1 2	100	814.93	2+							

From ENSDF

 ${}^{96}_{38}{
m Sr}_{58}{
m -4}$

 ${}^{96}_{38}{
m Sr}_{58}{
m -4}$

Adopted Levels, Gammas (continued)

$\gamma(^{96}Sr)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	Eγ	$I_{\gamma}^{\#}$	$E_f J_f^{\pi}$	Mult. [†]	α	Comments
2525.53		673.3 3	48 12	1852.14 (3)			
2529 3		132.8 2 677 2	25 5	$1/92.77 4^{\circ}$ 1852 14 (3)			
2027.0		1714.3	100 10	814.93 2+			
2576.25		1761.3 2	100	814.93 2+			
2703.73		1075.9 <i>3</i>	29 3	$1628.19(2^+)$			
		1196.6 2	39 4	1506.84 2+			
2710 70		1888.9 2	100 10	814.93 2			
2/19.70		1904 5 2	43 5	$814 \ 93 \ 2^+$			
2785.8	(6^{+})	810.0 ^a	50 13	$1975.73 (4^+)$			
270010	(0)	992.9 ^a	100 13	1792.77 4+			
2880.5		2065.5 3	100	814.93 2+			
2899.4		779.5	$5.\times 10^{1}$ 5	2120.07 (4+)			
		1106.6	$1.0 \times 10^2 \ 3$	1792.77 4+			
3009.8		1217.0	100	1792.77 4+			
3064.80		1212.5 2	37 4	1852.14 (3)			
		2250.0 2	100 10	814.93 21	@		
3126.0	(8+)	659.3 ⁴	100	2466.6 (6 ⁺)	E2	0.001656 24	$\alpha(K) = 0.001462 \ 21; \ \alpha(L) = 0.0001628 \ 23; \ \alpha(M) = 2.73 \times 10^{-5} \ 4$
2105 76		2200 0 2	100	<u>814 02 2+</u>			$\alpha(0)=2.15\times10^{-7} 3; \alpha(N+)=3.62\times10^{-6}$
3738.0		2380.8 2	1.0×10^2 3	2800 /			
5250.9		757.8	94 19	2481.0			
3244 92		$2429.9^{b}3$	100	814.93 2+			
3328.9	(7^{+})	542.8^{a}	100 11	$2785.8 (6^+)$			
	(.)	862.3 ^{<i>a</i>} 1	19 6	2466.6 (6 ⁺)			
3446.3?		2631.3 ^b 4	100	814.93 2+			
3524.5	(9^{+})	195.7	19 6	3328.9 (7 ⁺)			
		398.4	100 11	3126.0 (8+)			
3604.7	(6^{+})	1138.0	$1.0 \times 10^2 \ 3$	2466.6 (6+)			
		1812.0	38 13	1792.77 4+			
3755.4	$(1,2^+)$	2940.1 3	677	814.93 2+			
3851 3		3/30.1 3	100 10	$0.0 0^{+}$			
3887.0	(10^{+})	240.0^{2}	100	3126.0 (8 ⁺)			
4048 72	(10)	2196 5 ^b 4	100	1852 14 (3)			
4131.1		279.8	100	3851.3			
4133.2		804.3	100	3328.9 (7 ⁺)			
4322.6?		3507.6 <mark>b</mark> 5	100	814.93 2+			

S

From ENSDF

⁹⁶₃₈Sr₅₈-5

$\gamma(^{96}\text{Sr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
4330.4 4443.1		805.9 312.0	100 100	3524.5 4131.1	(9+)	5158.7 5168.5	(1,2 ⁺)	4344.2 <i>5</i> 3375.2 <i>5</i>	100 <i>20</i> 66 <i>10</i>	814.93 1792.77	2+ 4+
4725.5 4785.1?	(12 ⁺)	838.5 ^{&} 342.0	100 100	3887.0 4443.1	(10 ⁺)			4355.0 7 5167.3 <i>10</i>	100 <i>20</i> 29 <i>12</i>	814.93 0.0	2^+ 0^+
4799.4?		3984.4 ^b 4	100	814.93	2+	5349.3?		3842.4 <mark>b</mark> 10	100	1506.84	2^{+}
5049.4?		4234.4 ^b 10	100	814.93	2+	5597.5	(14^{+})	872 1	100	4725.5	(12^{+})
5090.9?		4275.9 ^b 5	100	814.93	2+	6519.5	(16 ⁺)	922 1	100	5597.5	(14^{+})
5132.8 5158.7		3903.4 ^b 5 3365.4 5	100 82 9	1229.28 1792.77	$0^+ 4^+$	7526.5	(18 ⁺)	1007 1	100	6519.5	(16 ⁺)

^b Placement of transition in the level scheme is uncertain.

 $^{96}_{38}{
m Sr}_{58}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{96}_{38}{
m Sr}_{58}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{96}_{38}{
m Sr}_{58}$

 $^{96}_{38}{\rm Sr}_{58}$