⁹⁶Pd ε decay 1985Ry02

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 109, 2501 (2008)	1-Apr-2008						

Parent: ⁹⁶Pd: E=0.0; J^{π}=0⁺; T_{1/2}=122 s 2; Q(ε)=3.45×10³ 15; % ε +% β ⁺ decay=100.0 Measured: γ , $\gamma\gamma$, γ^{\pm} (1985Ry02,1982Ku15,1980Ar11). α : Additional information 1.

⁹⁶Rh Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	6+	9.90 min 10	$\%\varepsilon + \%\beta^+ = 100$
52.00 10	3+	1.51 min 2	
176.7 <i>3</i>	(2^{+})		
775.50 25	(2^{+})		
939.1 <i>3</i>	1^{+}		
1185.5? <i>10</i>			
1275.3 <i>3</i>	1^{+}		
1564.6 4	1^{+}		
1802.1 4	1^{+}		

[†] Adopted values.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
$(1.65 \times 10^3 \ 15)$	1802.1	0.20 21	4.6 5	4.11 11	4.8 5	av Eβ=281 66; εK=0.83 4; εL=0.104 5; εM+=0.0247 12
$(1.89 \times 10^3 \ 15)$	1564.6	0.6 4	4.8 5	4.21 11	5.4 4	av Eβ=384 66; εK=0.76 6; εL=0.095 8; εM+=0.0227 19
1149 50	1275.3	10 <i>3</i>	29 4	3.55 12	39.6 <i>13</i>	av Eβ=511 67; εK=0.64 8; εL=0.079 10; εM+=0.0189 22
						E(decay): from $\beta^+/\epsilon + \beta^+ = 0.257\ 28$ (from I γ and I $\gamma \pm$)
						(1985Ry02).
$(2.26 \times 10^3 \ 15)$	1185.5?	0.09 10	0.2 2	5.7 5	0.3 3	av Eβ=551 67; εK=0.59 8; εL=0.074 10; εM+=0.0176 22
$(2.51 \times 10^3 \ 15)$	939.1	23 4	28 5	3.70 12	50.9 24	av E β =661 68; ε K=0.47 8; ε L=0.059 9; ε M+=0.0140 22

[†] Absolute intensity per 100 decays.

 $\gamma(^{96}\text{Rh})$

I γ normalization: $\Sigma I \gamma$ (to 3⁺ isomer)=100%.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α	Comments
(52.0 1)		52.00	3+	0.0	6+	M3	640 11	$\alpha(K)=374 6; \alpha(L)=214 4; \alpha(M)=44.4 8; \alpha(N)=7.00$ $I3; \alpha(O)=0.182 4; \alpha(N+)=7.18 I3$ Mult.: from $\alpha(K)$ exp in it Decay.
124.9 <i>4</i>	100 5	176.7	(2+)	52.00	3+	[M1]	0.185	$\alpha(K)=0.161 \ 3; \ \alpha(L)=0.0195 \ 4; \ \alpha(M)=0.00364 \ 6; \ \alpha(N)=0.000602 \ 10; \ \alpha(O)=3.01\times10^{-5} \ 5 \ \alpha(N+)=0.000633 \ 11$
163.8 6	0.35 10	939.1	1+	775.50	(2^{+})			
289 1	< 0.3	1564.6	1^{+}	1275.3	1^{+}			
336.1 <i>5</i> 499.7 <i>3</i>	1.5 <i>3</i> 27.5 <i>10</i>	1275.3 1275.3	1^+ 1^+	939.1 775.50	1 ⁺ (2 ⁺)			

$^{96}\mathbf{Pd}\,\varepsilon\,\mathbf{decay}$ 1985Ry02 (continued)

γ (⁹⁶Rh) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
598.8 3 625.3 4 723.4 3 762.3 2 788.9 5 862.3 7 887.1 5	8.0 4 1.6 3 25.1 10 76.9 35 3.4 4 0.6 2 3.9 4	775.50 1564.6 775.50 939.1 1564.6 1802.1 939.1	$(2^{+}) \\ 1^{+} \\ (2^{+}) \\ 1^{+} \\ $	$\begin{array}{cccc} 176.7 & (2^+) \\ 939.1 & 1^+ \\ 52.00 & 3^+ \\ 176.7 & (2^+) \\ 775.50 & (2^+) \\ 939.1 & 1^+ \\ 52.00 & 3^+ \end{array}$	$\begin{array}{c} 1008.8^{\#} \ 10\\ 1026.7 \ 5\\ 1098.7 \ 6\\ 1223.4 \ 7\\ 1388.5 \ 6\\ 1625.6 \ 6 \end{array}$	<0.9 1.0 3 26.6 15 4.8 5 3.0 4 5.7 6	1185.5? 1802.1 1275.3 1275.3 1564.6 1802.1	1^+ 1^+ 1^+ 1^+ 1^+	176.7 ((775.50 () 176.7 () 52.00 3 176.7 () 176.7 ()	(2^+) (2^+) (2^+) (2^+) (2^+) (2^+)

[†] From 1985Ry02.
[‡] For absolute intensity per 100 decays, multiply by 0.657 7.
[#] Placement of transition in the level scheme is uncertain.

51

3