⁹⁶Rb IT decay 2005Pi13,1999Ge01

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 109, 2501 (2008)	1-Apr-2008

Parent: ⁹⁶Rb: E=1134.6 11; J^{π} =(10⁻); $T_{1/2}$ =2.00 µs 10; %IT decay=100.0

⁹⁶Rb-T_{1/2}: From 2005Pi13. Other: 1.65 μs 15 (1999Ge01).

All information taken from 2005Pi13, unless stated otherwise. 96 Rb isotope produced 241 Pu(n,f) reaction.

E=thermal. Measured E γ , I γ , $\gamma\gamma$, ce- γ coin, lifetimes using two different setups installed at the focal plane of the Lohengrin mass spectrometer that was used to separate fission fragments (FFs). The first consisted of a gas detector to detect FFs, behind which were two adjacent Si(Li) detectors for ce and x-rays, while γ rays were detected by two Ge detectors placed perpendicular to the beam. In the second setup, the FFs were detected in an ionization chamber. γ rays deexciting isomeric states were detected by Clover Ge detector and three single Ge crystals of the Miniball array.

⁹⁶Rb Levels

Level scheme given in figure 9 of 1999Ge01 is superseded by that in figure 4 of 2005Pi13. Several cascades in 1999Ge01 have been reordered in 2005Pi13.

Low-lying states are expected to result from coupling of $\pi f_{5/2}$ orbital with one of three possible neutron states $v_{s_{1/2}}$, $vd_{3/2}$, or vg_{7/2}.

E(level) [†]	J^{π} @	T _{1/2}	Comments
0.0	$2^{(-)}$		Configuration= $\pi f_{5/2} v_{s_{1/2}}$ (1999Ge01).
59.31 15	(3 ⁻)		possible member of $\pi f_{5/2} v_{s_{1/2}}$ multiplet.
148.87 25	(4 ⁻)		Configuration= $[\pi f_{5/2} v d_{3/2}]_{4-}$.
185.35 <i>15</i>			
187.7 4			
225.4 3			
461.61 [#] 14	(3 ⁻)		
554.50 [‡] 15	(4 ⁻)		
671.40 [#] 18	(5 ⁻)		
794.82 [‡] 22	(6 ⁻)		
972.5 [#] 3	(7 ⁻)		
1094.6 [‡] 3	(8 ⁻)		
1134.6 11	(10 ⁻)	2.00 µs 10	$T_{1/2}$: From timing of 300 keV transition (2005Pi13). Other: 1.65 μ s 15 (1999Ge01). Configuration=[$\pi g_{9/2} \nu h_{11/2}$] ₁₀₋ (1999Ge01).

[†] From least-squares fit to $E\gamma$'s.

[‡] Band(A): $\pi 3/2[431] \otimes v 3/2[541]$, $K^{\pi} = 3^{-}$, $\alpha = 0$. $\beta > 0.28$, rotational band proposed for this nuclide based upon intense M1 transitions within the group and E2 crossover transitions.

[#] Band(a): $\pi 3/2[431] \otimes v 3/2[541]$, $K^{\pi}=3^{-}$, $\alpha=1$. $\beta>0.28$, rotational band proposed for this nuclide based upon intense M1 transitions within the group and E2 crossover transitions.

[@] From Adopted Levels.

From ENSDF

⁹⁶₃₇Rb₅₉-2

				⁹⁶ Rb IT	decay	2005Pi	i13,1999Ge01	l (continue	(b.
$\gamma^{(96}$ Rb)									
E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α [@]	$I_{(\gamma+ce)}$ #	Comments
38.0 ^{&a} 5 38.0 ^{&a} 5 40 1	7 ^{&} 2 7 ^{&} 2 3.6 4	185.35 187.7 1134.6	(10 ⁻)	148.87 148.87 1094.6	(4 ⁻) (4 ⁻) (8 ⁻)	E2	27 3	100	E_{γ} : 37 listed in figure 4 of 2005Pi13. E_{γ} : 39 listed in figure 4 of 2005Pi13. E_{γ} : From text 0f 2005Pi13; not listed in authors' table I or II. E_{γ} : Assignment of isomeric transition for this γ ray supported by E2 character and its transition intensity.
									 I_(γ+ce): Ice(K)=68 7; Ice(L)=27 5; Ice(M+) assumed (by the evaluators) as 9 2 from 0.33(Ice(L)). Summed intensity=104 9, consistent with 100. Mult.: From comparison of comparison of account of the second s
									with that predicted by theory $(K/L=2.9 \text{ for } E2).$
59.3 2	17 2	59.31	(3 ⁻)	0.0	2 ⁽⁻⁾	M1	0.628 11		$\alpha(K)\exp=0.62 \ 9$ $\alpha(K)=0.553 \ 10; \ \alpha(L)=0.0633 \ 11;$ $\alpha(M)=0.01048 \ 18; \ \alpha(N)=0.001179$ $21; \ \alpha(O)=4.95\times10^{-5} \ 9$ $\alpha(N+)=0.001229 \ 21$
89.5 2	8 1	148.87	(4 ⁻)	59.31	(3 ⁻)	M1+E2	0.8 7		Ice(K)=10.5 <i>15</i> . α (K)exp=0.59 <i>15</i> α (K)=0.7 <i>6</i> ; α (L)=0.11 <i>9</i> ; α (M)=0.018 <i>15</i> ; α (N)=0.0019 <i>16</i> ;
92.8 2	37 2	554.50	(4 ⁻)	461.61	(3-)	M1	0.178		α (O)=5.E-5 4; α (N+)=0.0019 16 Ice(K)=4.7 10. α (K)exp=0.23 5 α (K)=0.1569 24; α (L)=0.0178 3; α (M)=0.00294 5; α (N)=0.000332 5; α (O)=1402×10 ⁻⁵ 22
116.8 2	36 <i>3</i>	671.40	(5 ⁻)	554.50	(4-)	M1	0.0946		$\begin{aligned} &\alpha(N+)=0.000346\ 6\\ &Ice(K)=8.5\ 20.\\ &\alpha(K)=8.5\ 20.\\ &\alpha(K)=0.0834\ 13;\ \alpha(L)=0.00940\ 14;\\ &\alpha(M)=0.001555\ 23;\\ &\alpha(N)=0.000176\ 3; \end{aligned}$
122.0 3	32 <i>3</i>	1094.6	(8 ⁻)	972.5	(7 ⁻)				$\alpha(O)=7.45 \times 10^{-6} 11$ $\alpha(N+)=0.000183 3$ Ice(K)=3.0 9. $\alpha(K)ex = 0.05 2 \text{ for } 122.0\gamma + 123.5\gamma$ doublet.
123.5 3	36 <i>3</i>	794.82	(6 ⁻)	671.40	(5 ⁻)				Ice(K)(122+124)=3.5 <i>10</i> . Ice(K)=3.5 <i>10</i> for 123.5+122.0. α (K)ex =0.05 2 for 122.0 γ +123.5 γ doublet.
126.0 <i>3</i> 148.8 <i>3</i>	72 71	185.35 148.87	(4 ⁻)	59.31 0.0	(3 ⁻) 2 ⁽⁻⁾	(E2)	0.225		$\begin{aligned} &\alpha(\text{K}) = 0.194 \ 3; \ \alpha(\text{L}) = 0.0260 \ 5; \\ &\alpha(\text{M}) = 0.00429 \ 7; \ \alpha(\text{N}) = 0.000456 \\ &8; \ \alpha(\text{O}) = 1.522 \times 10^{-5} \ 24 \\ &\alpha(\text{N}+) = 0.000471 \ 8 \\ &\text{Mult.: from weak ce(K)} \ (\approx 7\% \\ &\text{intensity from } \gamma(\text{ce}) \ \text{coin}). \end{aligned}$

Continued on next page (footnotes at end of table)

⁹⁶Rb IT decay 2005Pi13,1999Ge01 (continued)

$\gamma(^{96}\text{Rb})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α [@]	Comments
166.1 <i>3</i>	71	225.4		59.31 (3-)			
177.6 2	12 <i>I</i>	972.5	(7^{-})	794.82 (6 ⁻)			
185.4 2	12 2	185.35		$0.0 2^{(-)}$			
209.9 2	16 2	671.40	(5 ⁻)	461.61 (3 ⁻)			
240.3 2	42 3	794.82	(6 ⁻)	554.50 (4-)	E2	0.0395	$\alpha(K)\exp=0.040 \ I2$ $\alpha(K)=0.0345 \ 5; \ \alpha(L)=0.00418 \ 6; \ \alpha(M)=0.000688 \ I0;$ $\alpha(N)=7.52\times10^{-5} \ I1; \ \alpha(O)=2.82\times10^{-6} \ 4$ $\alpha(N+)=7.81\times10^{-5} \ I2$
							Ice(K) = 1.7.5.
276.3 3	51	461.61	(3^{-})	185.35			()
300.0 <i>3</i>	68 5	1094.6	(8-)	794.82 (6 ⁻)			α (K)exp=0.018 8 α (K)exp for 300.0+301.0. Lee(K)(300+301)=1.2 5.
301.0 4	17 3	972.5	(7 ⁻)	671.40 (5 ⁻)			α (K)exp=0.018 8 α (K)exp for 300.0+301.0. Ice(K)(300+301)=1.2 5.
329.0 4	71	554.50	(4 ⁻)	225.4			
366.8 <i>3</i>	10 <i>1</i>	554.50	(4-)	187.7			
369.2 <i>3</i>	13 2	554.50	(4 ⁻)	185.35			
402.4 4	3 1	461.61	(3 ⁻)	59.31 (3 ⁻)			
405.5 4	4 1	554.50	(4 ⁻)	148.87 (4-)			
461.6 2	48 <i>3</i>	461.61	(3 ⁻)	$0.0 2^{(-)}$			
495.2 <i>3</i>	52	554.50	(4 ⁻)	59.31 (3-)			
554.5 <i>3</i>	5 1	554.50	(4 ⁻)	$0.0 2^{(-)}$			

[†] From table I of 2005Pi13, unless otherwise stated. [‡] From comparison of measured $\alpha(K)exp's$ with theory.

[#] Absolute intensity per 100 decays.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with undivided intensity.

^{*a*} Placement of transition in the level scheme is uncertain.

⁹⁶Rb IT decay 2005Pi13,1999Ge01

96 37Rb₅₉

4

