⁹⁶Ag ε decay (6.9 s) 2003Ba39,1997Sc30

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 109, 2501 (2008)	1-Apr-2008

Parent: ⁹⁶Ag: E=0.0+y; $J^{\pi}=(2^+)$; $T_{1/2}=6.9 \text{ s} 6$; $Q(\varepsilon)=1.17\times 10^4 SY$; $\%\varepsilon+\%\beta^+$ decay=100.0

2003Ba39: ⁹⁶Ag produced by ⁶⁰Ni(⁴⁰Ca,p3n) E=4.35 MeV/nucleon; separated by GSI online separator. Measured E γ , I γ , $\gamma\gamma$, β , $\beta\gamma$, $\beta\gamma\gamma$, delayed protons, x rays, p γ coin using three different systems: 1. plastic scintillator combined with Ge array (15 detectors: two clovers and one Euroball cluster) for $\beta\gamma$ and $\beta\gamma\gamma$ measurement. 2. Large NaI detector for total absorption spectrum (tas) combined with a Ge detector and two Si detectors for $\beta\gamma$, β p, p γ and x γ events. 3. Two Si detector Δ E-E telescopes for delayed protons (FWHM=80 keV).

1997Sc30: ⁹⁶Ag produced by ⁶⁰Ni(⁴⁰Ca,p3n) E=4.1 MeV/nucleon. Measured Eγ, Iγ, γγ, xγ, Ep, Ip, pγ coin using Ge and Si(Li) detectors.

Branching: %*ɛ*p= 18 5 (2003Ba39).

 α : Additional information 1.

⁹⁶Pd Levels

E(level)	$J^{\pi T}$
0.0	0^{+}
1415.31 10	2+
2099.01 14	(4^{+})
2391.4? 3	≤4

[†] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ ‡	Ie‡	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
(9308 [#] SY)	2391.4?	<5	< 0.04	>6.5	<5	av $E\beta = 3.89 \times 10^3$ 12; $\varepsilon K = 0.0066$ 6; $\varepsilon L = 0.00081$ 8; $\varepsilon M = -0.000197$ 18
(9600 <i>SY</i>)	2099.01	<5	< 0.03	>6.6	<5	av $E\beta$ =4.03×10 ³ 12; ε K=0.0059 6; ε L=0.00074 7; ε M+=0.000178 16
(10284 <i>SY</i>)	1415.31	33 5	0.18 3	5.90 10	33 5	av $E\beta$ =4.37×10 ³ 12; ε K=0.0048 4; ε L=0.00059 5; ε M+=0.000142 12

[†] From Total Absorption Spectrometer (TAS, 2003Ba39). a large fraction of β^+ and ε feeding proceeds to high-lying states as indicated by total absorption spectrum. Logft values calculated assuming Y=0.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

$\gamma(^{96}\text{Pd})$

Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	$I_{(\gamma+ce)}$ ‡	Comments
683.7 1	2099.01	(4+)	1415.31	2+	[E2]	<5	ce(K)/(γ +ce)=0.00219 3; ce(L)/(γ +ce)=0.000268 4; ce(M)/(γ +ce)=5.03×10 ⁻⁵ 7; ce(N)/(γ +ce)=8.41×10 ⁻⁶ 12 ce(N+)/(γ +ce)=8.41×10 ⁻⁶ 12
976.1 <i>3</i>	2391.4?	≤4	1415.31	2^{+}		<5	
1415.3 <i>1</i>	1415.31	2+	0.0	0+	[E2]	38 5	ce(K)/(γ +ce)=0.000421 6; ce(L)/(γ +ce)=4.87×10 ⁻⁵ 7; ce(M)/(γ +ce)=9.11×10 ⁻⁶ 13; ce(N)/(γ +ce)=1.534×10 ⁻⁶ 22 ce(N+)/(γ +ce)=5.57×10 ⁻⁵ 8

Continued on next page (footnotes at end of table)

 $^{96} \text{Ag } \varepsilon \underline{\text{decay (6.9 s)}}$ 2003Ba39,1997Sc30 (continued)

 γ (⁹⁶Pd) (continued)

[†] From Adopted Gammas.[‡] Absolute intensity per 100 decays.

⁹⁶Ag ε decay (6.9 s) 2003Ba39,1997Sc30

Decay Scheme

 $^{96}_{46}{\rm Pd}_{50}$