					History			
	Туре		Author	r		Citation	n	Literature Cutoff Date
	Full Evaluation	on S. K. E	asu, G. Mukherje	ee, A. A.	Sonzogni	NDS 111,255	5 (2010)	30-Jun-2009
$Q(\beta^{-})=1123.5$ Note: Current S(2n)=14682.9	<i>18</i> ; S(n)=6462 evaluation has <i>20</i> , S(2p)=202	2.0 9; S(p)=1 used the foll 153 8 (2009)	0598 7; $Q(\alpha) = -4$ owing Q record 1 AuZZ).	1434 6 1123.6	2012Wa38 18 6462.1	3 9 10599 7 -44	29 5 2	009AuZZ.
TVOther TV 94 Zr $(^{16}$ TV 96 Zr $(^{12}$ TV 96 Zr $(^{40}$ CPRISMA + CL	reactions: 0, ¹⁵ 0) C, ¹³ C) a, ⁴¹ Ca) ARA setup.	E=10 E=38 E=1	4 MeV: 1973Zi MeV; 1973Ch1 52 MeV; 2007S:	04 meas 0 measu z05 mea	ured $\sigma(\theta=$ red $\sigma(\theta=1$ sured E γ ,	25°); mag 00°); su Iγ of	gnetic sp rface-ban binary :	pectrometer. rrier detector telescopes. partners, σ (M, Q, θ =68°);
				9.	⁵ Zr Levels			
			Cr	oss Refe	rence (XRE	EF) Flags		
	A B C D	⁹⁵ Y β ⁻ dec ⁹⁴ Zr(n,γ) H ⁹⁴ Zr(n,γ) H ⁹⁴ Zr(p,p),(j	cay E=thermal E=2,24 keV p,p'): ex from IA	E F G R H	⁹⁴ Zr(d,p), ⁹⁶ Zr(p,d) ⁹⁶ Zr(d,t) ⁹⁶ Zr(³ He,	$(d,p\gamma),(\alpha,^{3}\text{He})$	I 962 J 173 K 176	Zr(³ He, α) IAS ³ Yb(²⁴ Mg,F γ) ⁵ Yb(²⁸ Si,X γ)
E(level) [†]	J ^π ‡	T _{1/2} #	XREF			C	Comments	
				Q=+0.2 $T_{1/2}$: fr (1940) (1965) divid 10 (1) Statis same 98.69 omitt (1945) incomvalue 64.09 the d meth gives meth result these J ^{π} : from corroo (1980) μ : NMII Q: elecc other	22 2 (1998S rom the wei 0Sa08), 65 (SSi16), 64.0 ed by 3 to (983Wa26) stical Weigh result even %, because the ed because 5Po01). If the isistent and e of 1980Ho 0 with a red ata set, the od (1992Ra) the resultion of (1992Ra) the resultio	teo1); μ =1.13 2 ghted average of d 2 (1951BrZZ). 5 d 2 (1976Ha5 convert to 1 σ), 6 with reduced- χ^2 at, (LRSW) meth though the 198 the set is consist it is inconsisten he value from 1 th the LRSW meth 17 from 0.006 t uced- χ^2 of 7.8. discrepancy can 08) which increa d 6. So, the ado ods. dden unique sha spectroscopic fa Bi04). ed nuclei in iron toole alignment of 5 (1902Be50)	f the follow, 65.2 d 10 1, with the 64.030 d 6 =0.72. The nod (19852 0Ha17 valic tent. Otheric t with the 965F102 is hod increased to 0.05 and If one leave be dealt value ase its uncompeted value uppe of β -spictor data f ; adopted f ${}^{95}Zr+{}^{95}I$	wing 7 values: 63 d 5 0 (1953Co23), 65.1 d 9 e published uncertainty f (1980Ho17), and 64.09 d e Limitation of Relative ZiZY,1992Ra09) gives this ue has a relative weight of r values: 65.5 d 2 (1965Fl02, other values) and 67.8 s included, the set is ses the uncertainty of the d the resulting average is ves the value of 1965Fl02 in with by the RAJEVAL sertainty from 0.2 to 0.88 and by the Normalized Residual neertainty to 0.58 and gives a e is the same for each of sectra from $1/2^-$, from (d,p) reactions value from 2005St24.
953.97 <i>13</i> 1140 <i>50</i>	1/2 ⁺ 3/2 ⁺ ,5/2 ⁺		ABCDEFGH F	XREF: J^{π} : from J^{π} : L(p	F(1020)G(9) n angular m ,d)=2.	960). nomentum transf	er in strip	ping and pickup reactions.
1323.80 <i>13</i>	3/2+,5/2+		A CDE G	XREF: J^{π} : from	G(1330). n angular m	nomentum transf	er in strip	ping and pickup reactions.
1618.35 22	$(3/2)^+$		ABCDE GH	XREF:	D(1628)G(1650).		

Continued on next page (footnotes at end of table)

⁹⁵Zr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments						
			J^{π} : L(d,t)=2; 3/2 ⁺ from $\sigma(\theta)$ in ⁹⁴ Zr(p,p),(p,p') in ⁹⁵ Nb.						
1624.7 <i>3</i>		E	E(level): observed only in 2003So23.						
1676 22 10	(7/2+)		$d\sigma/d\omega$ (30°)=612 µb/sr; $d\sigma/d\omega$ (70°)=34 µb/sr.						
16/6.32 19	$(1/2^{+})$ $(5/2)^{+}$	JK ADEC	XREF: D(1745)G(1750)						
1721.50 21	(3/2)	n DL G	I^{π} : L(d, p) (α^{3} He)=2, 5/2 ⁺ from $\sigma(\theta)$ in 94 Zr(p, p) (p, p') in 95 Nb.						
1792.2 <i>3</i>	$(9/2^+)$	EF H JK	XREF: E(1793.4)F(1790)H(1788).						
			J^{π} : L(³ He, α)=5,(4).						
1892.66 18	3/2+	A E H	XREF: H(1900).						
1002.07.20	1.10(+) 2.10 5.10+		J^{n} : L(d,p)=2.						
1903.97 20	1/2(*),3/2,5/2*	A E GH	XREF: G(1920)H(1900). $I_{\pi_1}^{\pi_2} \log f_{\pi_2}^{-7} \otimes f_{\pi_2}^{-$						
1940 24 20	1/2(+) 3/2 5/2+	A DE	J : $\log f = 7.8$ to 8.8 ($\log f = 1 \ge 6.5$) from $1/2$: γ to $5/2$. XREF: D(1942)						
1940.24 20	1/2 ,5/2,5/2	A DL	I^{π} log $ft=7.8$ to 8.8 (log $f^{lu}t>8.5$) from $1/2^{-1} \gamma$ to $5/2^{+1}$ supported by $\sigma(\theta)$ in						
			94 Zr(p,p),(p,p') in 95 Nb.						
1955.92 15	$5/2^{(+)}$	ACE	J^{π} : 5/2,7/2 from primary γ from p-wave res but none from s-wave in (n,γ)						
			E=2,24 keV. γ to 1/2 ⁺ , supported by $\sigma(\theta)$ in 94 Zr(p,p),(p,p') in 95 Nb.						
2021.6 3	$(11/2^{-})$	EFGH JK	XREF: F(2030)G(2030)H(2032).						
			J^{π} : from L=5 in (d,p),(³ He, α), ⁹⁴ Zr(³ He,d) IAR, and (³ He, α). L(p,d)=(4) and						
			$L(d,t)=4$ are discrepant. $L({}^{3}He,\alpha)=5,(4)$. Shown without parentheses in level						
21202 50		F	scheme figure 6 of 2005Pa48.						
2250 8	$7/2^{+}.9/2^{+}$	н	$J^{\pi}: L({}^{3}\text{He}, \alpha) = 4.$						
2253.7? 3	$(1/2^+, 3/2, 5/2^+)$	AB	J^{π} : log ft=7.7 (log f ¹ ^u t ≥ 8.5)? from 1/2 ⁻ ; possible γ to 5/2 ⁺ .						
2293.7 8	3/2+,5/2+	CDE	XREF: D(2279)E(2291).						
			J^{π} : $1/2^+$ from $\sigma(\theta)$ in 94 Zr(p,p),(p,p') in 95 Nb discrepant.						
2317? 10	$(3/2^{+})$	D G	XREF: G(2300).						
10 דר רדבר	3/2+	A DEEC	J [*] : from $\sigma(\theta)$ in $\gamma^2 Zr(p,p), (p,p')$ in $\gamma^3 Nb$; not consistent with $L(d,t)=(1)$.						
2372.27 19	5/2	A DEFG	$I^{\pi} \cdot L(d \mathbf{n}) (\alpha^{3} \text{He}) = 2 \cdot \log t = 6.7 \text{ from } 1/2^{-1}$						
2466 7	$7/2^+, 9/2^+$	DE H	XREF: D(2471)E(2450)H(2472).						
			E(level): weighted average of 2471 10 (p,p),(p,p')), 2450 10 ((d,p),(α , ³ He)) and						
			2472 8 (3 He, α).						
05100 40	2/2+ 5/2+	-	J^{π} : from angular momentum transfer in stripping and pickup reactions.						
2510? 40	$3/2^{+}, 5/2^{+}$	r	J^{A} : $L(p,d)=2$.						
2629.1 3	$(11/2^+)^{\sim}$ $(3/2^+)$	DF CH	XREF: E(2625)G(2670)H(2647)						
2030 7	(3/2)	DE GII	F(level): weighted average of 2641 11 (n n) (n n')) 2625 10 ((d n) (α^{3} He)) and						
			$2647 \ 10 \ ({}^{3}\text{He},\alpha).$						
			J^{π} : L(d,p),(α , ³ He)=2+5, L(³ He, α)=4, L(d,t)=(2), and 3/2 ⁺ from $\sigma(\theta)$ in						
			94 Zr(p,p),(p,p') in 95 Nb.						
2744 10	$(7/2)^+$	DE H	XREF: D(2744)E(2724)H(2725).						
0770	7/0+	C	$J^{\pi}: L({}^{3}\text{He}, \alpha) = 4.$						
2770	$1/2^{-1}$	G	$J^{*}: L(d,t)=4.$						
2010 12	$(12/2^+)^{(0)}$	n v	J' : L' He, u) = 1.						
2841 12	$(13/2)^{-1}$	DE H	XREF: E(2834)H(2827).						
_0.1 12	(-)-)		J^{π} : L(d,p), $({}^{3}\text{He},\alpha)=2+5$, L(${}^{3}\text{He},\alpha)=4$, L(${}^{3}\text{He},d$)=4, and 3/2 ⁺ from $\sigma(\theta)$ in						
			94 Zr(p,p),(p,p') in 95 Nb.						
2880 12	7/2+,9/2+	GH	J^{π} : L ³ He, α)=4.						
2948 10	7/2+,9/2+	ΕH	XREF: H(2930).						
			J^{n} : L(³ He, α)=4.						

Continued on next page (footnotes at end of table)

⁹⁵Zr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$		XRI	EF	Comments
2983 5	3/2+,5/2+		D F		XREF: F(2970).
2 0000 <i>ć</i>					$J^{\pi}: L(p,d)=2.$
3009? 6	$(3/2^+)$		DE		XREF: D(3012)E(2996).
					E(level): weighted average of 3012 5 (p,p),(p,p')) and 2996 10 ((d,p),(α , ⁹ He)).
20(2.8	2/2+ 5/2+		DE	~	J ^{<i>n</i>} : from $\sigma(\theta)$ in ⁷⁺ Zr(p,p),(p,p') in ⁷⁵ Nb.
3002 8	3/2, 3/2		DE	J	AKEF: $U(5030)$. E(level): weighted eveness of 2061 12 (n n) (n n ²) and 2062 10 ((d n) (n ³ Ha))
					E(level): weighted average of 5001 12 (p,p),(p,p))) and 5002 10 ((d,p),(α , He)). I^{π} : From angular momentum transfer in (d p) (α ³ He)t
					J^{π} : $(7/2^{-})$ from $\sigma(\theta)$ in 9^{4} $Tr(p, p)$ (p, p') in 9^{5} Nb discrepant
2078 2 4	(15/2-)			ער	$J : (1/2)$ from $U(0)$ in $\Sigma I(p,p), (p,p)$ in the discrepant.
3078.2 4	$(13/2)^{-1}$			л Ц	I^{π} , $I^{(3)}$ $I^{(3)}$ $I^{(3)}$
3102 12	9/2		F	п	J^{*} : L($\Pi e, u$)=4. I^{π} : L(d \mathbf{n}) ($\alpha^{3} H_{2}$)=5
3117 10	11/2	R	E		J [*] : $L(u,p), (u, ne)=3$. Probably not the same as the preceding state since it is populated in (n, u) E-thermal
3129.55 16	$1/2^{-}.3/2^{-}$	A			I^{π} : log $ft=5.5$ from $1/2^{-1}$.
3152? 12	1/2 ,5/2			Н	May correspond to the previous state.
3180.7.6	$(15/2^{-})^{@}$			זר	
3205 10	$3/2^+, 5/2^+$		Е		J^{π} : From angular momentum transfer in (d.p.) (α . ³ He).
3249.10 18	$(3/2)^{-}$	AB	_		J^{π} : log $ft=4.9$ to 5.8 from $1/2^{-}$. γ to $5/2^{+}$.
3250 12	9/2+			Н	J^{π} : L(³ He, α)=4.
3300? 10	$1/2^{+}$		Е		J^{π} : L(d,p),(α , ³ He)=0.
3320 30	9/2+		F		J^{π} : L(p,d)=4.
3330 10	$11/2^{-}$		Ε		J^{π} : L(d,p),(α , ³ He)=5.
3386? 12	7/2+,9/2+			Н	J^{π} : L(³ He, α)=4.
3398.7 4	$(17/2^+)^{@}$			JK	
3420? 10	9/2-,11/2-		Ε		E(level): 3386 and 3420 may be the same state. However, their energies do not
					overlap within uncertainties.
					J^{π} : L(d,p),(α , ³ He)=5.
3451.15 20	$1/2^{(+)}, 3/2$	A			J^{π} : log ft=6.0 to 7.1 from 1/2 ⁻ . γ to 5/2 ⁺ .
3458 12	7/2+,9/2+		_	H	J^{n} : L(³ He, α)=4.
3528 10	3/2+,5/2+		E		J^{n} : L(d,p),(α , 3 He)=2.
33/3.83 18	(3/2)	A	E		AKEF: E(5579). $I^{\pi_1} \log f = 4.9$ to 5.8 from $1/2^-$ or to $5/2^+$
3586 3 3	$1/2^{-} 3/2^{-}$	Α			I^{π} : log $f_{t}=5.0$ from $1/2^{-1}$
3650 10	$9/2^+$		F		J^{π} : L(p,d)=4.
3662 10	11/2-		Е		J^{π} : L(d,p),(α , ³ He)=5.
3684.89 22	1/2-,3/2-	Α			J^{π} : log $ft=5.8$ from $1/2^{-}$.
3780 12	7/2+,9/2+			H	J^{π} : L(³ He, α)=4.
3810? 10			Ε		May correspond to the preceding state.
3855 10			Е		L,S: $L=2,s(3/2^+)=0.031$ (1963Co10).
3887.0 5	$1/2^{(+)}, 3/2$	A			J^{π} : log ft=6.0 to 7.1 from 1/2 ⁻ . γ to 5/2 ⁺ .
3900 12	7/2+,9/2+		_	H	J^{n} : L(³ He, α)=4.
3926.1 20	1/2*	A	E		XREF: E(3960).
					J [*] : L((d,p),(^o He, α))=0 favors 1/2 ⁺ assignment.
3955.0 4	(19/2 ⁻)			JK	
4058.0 5	$(21/2^+)^{\textcircled{w}}$			JK	
4068? 10	$(7/2^+, 9/2^+)$		E		J^{π} : L(d,p),(α , ³ He)=(4).
4070.5 4	$(3/2)^{-1}$	A			J [*] : log ft =4.9 to 5.8 from 1/2 . γ to 5/2 ⁺ .
4230.1 0	$7/2^+ 0/2^+$			ц Ц	$\pi \cdot 1 (3 H_{0} \alpha) - 4$
400 12	(12, 3/2)			п	J. L(110, U)-4.
4485.5 3	(23/2')			K	E(level): corresponding level at 4250 with the reversed ordering of 1/8-426 cascade in 2002Fo03.

⁹⁵Zr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XR	EF	Comments
4580 12	7/2+,9/2+			Н	$\mathbf{J}^{\pi}: \mathbf{L}(^{3}\mathrm{He}, \alpha) = 4.$
4661.6 5	$(25/2^+)^{@}$			JK	
4932.3 6				J	
5389.3 6	$(25/2^+)$			K	
5660.7 7	$(27/2^+)$			K	
6464.8 6	$1/2^{+}$		С		
6486.8 <i>4</i>	1/2-,3/2-		С		
6561.8 7	$(31/2^+)^{@}$			K	
14980 20	$1/2^{-}$	32 keV 10		I	IAS(⁹⁵ Y, g.s.).
15640 20	3/2-	70 keV 10		I	IAS(⁹⁵ Y, 0.69 MeV).
15790 20	$5/2^{-}$	55 keV 10		I	IAS(⁹⁵ Y, 0.83 MeV).
17000 20	3/2-	90 keV 10		I	IAS(⁹⁵ Y, 2.04 MeV).

 † From least-squares fit to Ey's, except as indicated.

[‡] From angular momentum transfer in (³He, α) for bound states, except as noted, and from angular momentum transfer in (³He, α) IAS and parent spin for unbound states.

[#] From comparison of line widths in (³He, α) IAS to those of the quasi-bound states observed in ⁹⁰Zr(³He, α), except for T_{1/2}(g.s.) which is a weighted average of 63.98 d 6 (1971De11. Ge(Li)) and 64.05 d 6 (1976Ha51. Ge(Li),NaI). ^(a) From high-spin data in ¹⁷³Yb(²⁴Mg,F γ) and ¹⁷⁶Yb(²⁸Si,X γ), based on $\gamma\gamma(\theta)$ and γ decay pattern.

 $\gamma(^{95}\mathrm{Zr})$

All data are from β^- decay, except as noted. See β^- decay for unplaced γ' s.

E _i (level)	J_i^π	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments
953.97 1323.80	$\frac{1/2^+}{3/2^+,5/2^+}$	954.00 <i>20</i> 1324.0 <i>3</i>	100 100	0.0 0.0	5/2 ⁺ 5/2 ⁺	[E2]	
1618.35	(3/2)+	1618.5 5	100	0.0	5/2+		E_{γ} : weighted average of 1617.9 3 (⁹⁵ Y β ⁻ decay), 1619.0 3 (⁹⁴ Zr(n, γ) E=thermal).
1676.32	$(7/2^+)$	1676.3 2	100	0.0	5/2+		E_{γ} : from ¹⁷³ Yb(²⁴ Mg,F γ).
1721.50	$(5/2)^+$	396.2 [‡] 6 1721.4 <i>3</i>	91 <i>13</i> 100 <i>14</i>	1323.80 0.0	3/2 ⁺ ,5/2 ⁺ 5/2 ⁺		
1792.2	(9/2+)	115.9 2	100 4	1676.32	$(7/2^+)$		E_{γ} : from ¹⁷³ Yb(²⁴ Mg,F γ). I_{γ} : from (¹⁷⁶ Yb(²⁸ Si,X γ).
		1792.3 7	11.9 <i>17</i>	0.0	5/2+		E_{γ} : from ¹⁷³ Yb(²⁴ Mg,F γ). I_{γ} : from (¹⁷⁶ Yb(²⁸ Si,X γ).
1892.66	3/2+	569.07 <i>24</i> 1892.5 <i>3</i>	31 9 100 <i>13</i>	1323.80 0.0	3/2 ⁺ ,5/2 ⁺ 5/2 ⁺		
1903.97	1/2 ⁽⁺⁾ ,3/2,5/2 ⁺	580.25 <i>25</i> 1904.0 <i>5</i>	69 <i>14</i> 100 <i>23</i>	1323.80 0.0	3/2 ⁺ ,5/2 ⁺ 5/2 ⁺		
1940.24	$1/2^{(+)}, 3/2, 5/2^+$	1940.3 <i>3</i>	100	0.0	5/2+		
1955.92	5/2 ⁽⁺⁾	632.30 22 1002.13 24 1955.8 3	63 6 51 7 100 <i>1</i> 8	1323.80 953.97 0.0	3/2 ⁺ ,5/2 ⁺ 1/2 ⁺ 5/2 ⁺	[E2]	
2021.6	$(11/2^{-})$	229.4 2	100	1792.2	$(9/2^+)$		E_{γ} , I_{γ} : from ¹⁷³ Yb(²⁴ Mg,F γ).
2253.7?	(1/2+,3/2,5/2+)	2253.7 [‡] 3	100	0.0	5/2+		E _γ : weighted average of 2253.6 <i>3</i> (95 Y β ⁻ decay), 2254.1 <i>5</i> (94 Zr(n,γ).

$\gamma(^{95}\text{Zr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E_f	J_f^π	Comments
2372.27	3/2+	432.0 <i>4</i> 1048.31 <i>24</i> 1418.4 <i>4</i>	100 6 56 3 27 3	1940.24 1323.80 953.97	$\frac{1/2^{(+)}, 3/2, 5/2^{+}}{3/2^{+}, 5/2^{+}}$ 1/2 ⁺	
2629.1	$(11/2^+)$	2372.5 8 607.5 2	49 5 100 6	0.0 2021.6	5/2 ⁺ (11/2 ⁻)	E_{γ} : from ${}^{173}_{173}$ Yb(24 Mg,F γ).
		836.8 2	75 5	1792.2	(9/2+)	$I_{\gamma}: \text{ from } {}^{1/6}\text{Yb}({}^{28}\text{Si},X\gamma).$ $E_{\gamma}: \text{ from } {}^{1/3}\text{Yb}({}^{24}\text{Mg},F\gamma).$ $I_{\gamma}: \text{ from } {}^{176}\text{Yb}({}^{28}\text{Si},X\gamma).$
2837.2	$(13/2^+)$	208.1 2 815.4 <i>4</i>	100 20 53 10	2629.1 2021.6	$(11/2^+)$ $(11/2^-)$	E_{γ}, I_{γ} : from ¹⁷³ Yb(²⁴ Mg,F γ). E_{γ}, I_{γ} : from ¹⁷³ Yb(²⁴ Mg,F γ).
		1045.3 4	53 10	1792.2	(9/2 ⁺)	E_{γ} , I_{γ} : from ¹⁷³ Yb(²⁴ Mg, F γ).
3078.2	(15/2 ⁻)	241.0 2	100 5	2837.2	$(13/2^+)$	E _{γ} : from ^{1/3} Yb(²⁴ Mg,F γ). I _{γ} : from ¹⁷⁶ Yb(²⁸ Si,X γ).
		1056.4 7	63 8	2021.6	(11/2 ⁻)	E_{γ} : from ¹⁷³ Yb(²⁴ Mg,F γ). I _{γ} : from ¹⁷⁶ Yb(²⁸ Si,X γ).
3117.5?		3117.4 [‡] 4	100	0.0	5/2+	E_{γ} : from ⁹⁴ Zr(n, γ),E=thermal.
3129.55	1/2-,3/2-	1173.75 25	8.9 9	1955.92	5/2(+)	,
		1225.6 3	1.3 4	1903.97	$1/2^{(+)}, 3/2, 5/2^{+}$	
		1408.2 13	1.9 6	1721.50	$(5/2)^+$	
		1511.5 4	4.00 18	1618.35	$(3/2)^{+}$	
		1803.0.3	20.1 18	1525.80	$3/2^{+}, 3/2^{+}$ $1/2^{+}$	
		3129 1 5	846	955.97	$\frac{1}{2}$ 5/2 ⁺	
3180.7	$(15/2^{-})$	1159.0.7	100	2021.6	$(11/2^{-})$	$F_{\rm eff}$ I : from 173 Vb(24 Mg E ₂)
3249 10	$(13/2)^{-}$	1293.6.4	23.5	1955.92	(11/2) $5/2^{(+)}$	$L_{\gamma,1\gamma}$. Hold $10(141g,1\gamma)$.
5247.10	(3/2)	1309.9.6	13.5	1940.24	$\frac{3}{2}$ $\frac{1}{2}^{(+)}$ $\frac{3}{2}$ $\frac{5}{2}^{+}$	
		1356.8 4	48.6	1892.66	$3/2^+$	
		1527.0 3	4.9 12	1721.50	$(5/2)^+$	
		1925.2 <i>3</i>	56 8	1323.80	3/2+,5/2+	
		2295.0 7	100 10	953.97	1/2+	E _γ : weighted average of 2295.5 4 (⁹⁵ Y $β^-$ decay), 2294.0 6 (⁹⁴ Zr(n,γ) E=thermal).
						E_{γ} : only γ ray observed in (⁹⁴ Zr(n, γ) E=thermal).
		3249.0 5	84 7	0.0	5/2+	172
3398.7	$(17/2^+)$	561.4 2	100	2837.2	$(13/2^+)$	E_{γ}, I_{γ} : from ¹⁷⁵ Yb(²⁴ Mg, F γ).
3451.15	$1/2^{(+)}, 3/2$	1832.6 3	20 5	1618.35	$(3/2)^+$	
		2127.4 3	14 /	1525.80	$3/2^{+}, 3/2^{+}$ $1/2^{+}$	
		3451 4 7	100 11	955.97	1/2 5/2+	
3575 83	$(3/2)^{-}$	1635.4.3	2.0.12	1940.24	$1/2^{(+)} 3/2 5/2^+$	
5575.05	(3/2)	1683.0^{\dagger} 7	$45^{+}5$	1892.66	3/2+	
		1855.2.8	3.5.17	1721.50	$(5/2)^+$	
		2252.0 3	2.1 7	1323.80	$3/2^+, 5/2^+$	
		2621.8 <i>3</i>	3.6 7	953.97	1/2+	
		3576.0 5	100 7	0.0	5/2+	
3586.3	1/2-,3/2-	1213.8 <i>4</i> 1631 0 8	0.9 <i>3</i> 198	2372.27	$3/2^+$ $5/2^{(+)}$	
		1683 07 7	6016	1002.07	$1/2^{(+)} 3/2 5/2^{+}$	
		1967.9.3	2.1.5	1618 35	$(3/2)^+$	
		2632.4 7	100 7	953.97	$1/2^+$	
3684.89	1/2-,3/2-	555.5 3	100 11	3129.55	1/2-,3/2-	
		2730.7 3	19 6	953.97	1/2+	
		3684.9 <i>5</i>	53	0.0	5/2+	

Continued on next page (footnotes at end of table)

$\gamma(^{95}\text{Zr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	J_f^π	Mult.	Comments
3887.0	$1/2^{(+)} 3/2$	3886.9.5	100	0.0	5/2+		
3926.1	$1/2^+$, $3/2^+$	3926.0 20	100	0.0	$5/2^+$		
3955.0	(19/2 ⁻)	556.2 4	100 6	3398.7	$(17/2^+)$		$E_{\gamma}: \text{ from } {}^{173}\text{Yb}({}^{24}\text{Mg},F\gamma).$
		774.3 7	54 6	3180.7	(15/2 ⁻)		E_{γ} : from ¹⁷³ Yb(²⁴ Mg,F γ). L : from ¹⁷⁶ Yb(²⁸ Si X γ)
		877.0 4	64 <i>6</i>	3078.2	(15/2 ⁻)		E_{γ} : from ¹⁷³ Yb(²⁴ Mg,F γ). L : from ¹⁷⁶ Yb(²⁸ Si X γ)
4058.0	(21/2 ⁺)	103.0 2	100	3955.0	(19/2 ⁻)	(E1)	E _γ : from ¹⁷³ Yb(²⁴ Mg,Fγ). E_{γ} : from ¹⁷³ Yb(²⁴ Mg,Fγ). Mult.: suggested to be (E2) by ¹⁷³ Yb(²⁴ Mg,Fγ); not consistent with ¹⁷⁶ Yb(²⁸ Si,Xγ); adopted as (E1) following Jπi assignments of (¹⁷⁶ Yb(²⁸ Si,Xγ).
4070.5	$(3/2)^{-}$	2747.0 <i>5</i> 4070.0 <i>5</i>	100 <i>30</i> 31 <i>10</i>	1323.80 0.0	3/2 ⁺ ,5/2 ⁺ 5/2 ⁺		
4236.1		177.9 4	100	4058.0	$(21/2^+)$		
4483.5	$(23/2^+)$	425.7 3	100	4058.0	$(21/2^+)$		
4661.6	$(25/2^+)$	178.3 <i>3</i>	28 3	4483.5	$(23/2^+)$		E_{γ}, I_{γ} : observed only in ¹⁷⁶ Yb(²⁸ Si, F γ).
		425.3 4	10 4	4236.1			E_{γ} , I_{γ} : observed only in ¹⁷³ Yb(²⁴ Mg, X γ).
		603.6 2	100 8	4058.0	$(21/2^+)$		E_{γ},I_{γ} : from ¹⁷³ Yb(²⁴ Mg,F γ).
4932.3		270.7 4	13 <i>3</i>	4661.6	$(25/2^+)$		
5389.3	$(25/2^+)$	727.7 3	100	4661.6	$(25/2^+)$		
5660.7	$(27/2^+)$	271.4 3	100	5389.3	$(25/2^+)$		E_{γ} : γ placed above the 4663 level in 2002Fo03.
6464.8	$1/2^{+}$	4171	42 4	2293.7	$3/2^+, 5/2^+$		
		4847	32 3	1618.35	$(3/2)^+$		
		5141	100 10	1323.80	3/2+,5/2+		
		5510	92.9	953.97	1/2+		
6486.8	$1/2^{-}, 3/2^{-}$	4193	24 <i>3</i>	2293.7	3/2+,5/2+		
		4531	10.0 14	1955.92	$5/2^{(+)}$		
		4869	18.9 25	1618.35	$(3/2)^+$		
		5163	9.3 14	1323.80	$3/2^+, 5/2^+$		
		5532	100 10	953.97	1/2+		
(5(1.0	(21/2+)	6486	100 10	0.0	5/2+		
6561.8	$(31/2^+)$	901.0 <i>3</i>	100	5660.7	$(27/2^{+})$		

[†] Multiply placed with intensity suitably divided.
 [‡] Placement of transition in the level scheme is uncertain.

 $^{95}_{40}{
m Zr}_{55}$

Intensities: Type not specified @ Multiply placed: intensity suitably divided

$\begin{array}{c|c} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ & \gamma \text{ Decay (Uncertain)} \end{array}$

Legend

