				History		
	Туре		Author		Citation	Literature Cutoff Date
	Full Evaluation	on S. K. Basu, G. N	Mukherjee, A. A	A. Sonzogni	NDS 111,2555 (2010)	30-Jun-2009
$Q(\beta^-) = -2564$ Note: Current of S(2n) = 18557 6 α : Additional i	<i>11</i> ; S(n)=9934 evaluation has 5, S(2p)=13386 nformation 1.	7; S(p)=4896 5; Q(<i>a</i>) used the following Q 5 (2009AuZZ).	e)=-1806 7 record -2565	2012Wa38 12 9934 7	7 4896 5 -1808 6 20)09AuZZ.
				⁹⁵ Tc Levels		
			Cross Re	eference (XRE	F) Flags	
		A B C D	⁹⁵ Tc IT decay ⁹⁵ Ru ε decay ⁹³ Nb(α ,2n γ) ⁹⁴ Mo(p, γ) E=	r (61 d) E F G erres: av H	94 Mo(d,n) 94 Mo(³ He,d) 95 Mo(p,n),(p,n γ) 65 Cu(³⁶ S, α 2n γ)	
E(level) [†]	J ^π ^b	$T_{1/2}^{\ddagger}$	XREF		Comme	nts
0.0#	9/2+	20.0 h <i>l</i>	ABCDEFGH	$\frac{\% \varepsilon + \% \beta^{+} = 10}{\mu = 5.94 \ 6 \ (19)}$ J ^{π} : from L(³) T _{1/2} : from 1 μ : N/RD. 19 95.96 Tc in more accu from 1981	200 295Hi06,1981Ha16) He,d)=4, atomic beam (1' 962Vi04 (γ 's; NaI). See 1 95Hi06 measured the NM Ni to resolve discrepancie rate g-factor (1.321 <i>13</i> co Ha16). Others: 5.89 <i>10</i> (077Wi10. Static deat for	975Ru06). 1983Lu03 for other references. IR's for $^{94-96}$ Tc in Fe and es in $\beta_{\rm HF}$ and to deduce a mpared to original 1.308 21 1989Ra17,1981Ha16. N/rd), produce original
38.91 ^{&} 4	1/2-	61 d 2	ABCDEFGH	5.82 I2 (1 %IT=3.88 32 J^{π} : from L(³ $T_{1/2}$: from 1 % ε +% β ⁺ ,%I	977 w110. Static (low-ten 2; $%ε+%β^+=96.12$ 32 He,d)=1; M4 γ to 9/2 ⁺ . 959Un01 (γ(t),NaI). Othe T: see comment on Iγ no	perature) nuclear orientation). ers: see 1978LeZA. rmalization in 95 Tc ε
336.413 21	7/2+		BCD G	uecay (01	u).	
626.86 <i>3</i>	5/2+		BCD G	J^{π} : log $ft=5$.	7 from $5/2^+$; stretched or	$\Delta J=0 Q \gamma$ to $9/2^+$.
646.55 5	3/2-	0.44 ps +90–19	BCDEFG	XREF: $F(629)$	9). Had)—1, analysia of n da	$act of 2^+$ may in (n, n)
667 87 8 3	5/2-			J^{π} : from stre	tched E2 or guadrupole of	$p_{12} = 1/2^{-1}$
882.23 [#] 7	13/2+	1.2 ps +11-5	C GH	J^{π} : from stre	tched E2 or quadrupole c	ascade to $9/2^+$.
927.81.3	$3/2^{+}$	>589 fs	BCD G	$I_{1/2}$: from L I^{π} : strong D	γ to $1/2^-$ and strong O(+	$-0) \gamma$ to $7/2^+$.
956.99 [@] 9	$11/2^+$	1.3 ps + 5 - 3	BC GH	J^{π} : from M1	+E2 γ to 9/2 ⁺ state.	-,,,
980? 20 1033.87? 6	3/2 ⁺ ,5/2 ⁺ (1/2 ⁺)	53 fs +13-9	E G	T _{1/2} : from D J ^{π} : from ang J ^{π} : 1/2 ⁺ ,7/2 ⁺ in (p,n γ).	DSAM in $(\alpha, 2n\gamma)$. ular momentum transfer i from comparison of stat Possible isotropic D γ to	n (d,n). istical theory to 2 ⁺ res yield 1/2 ⁻ .
1084.97 4	$(5/2)^+$	≥347 fs	BC FG	XREF: $F(10')$	71).	
1178.60 <i>3</i> 1201 <i>10</i> 1213.13 <i>6</i>	7/2 ⁺ 1/2 ⁻ ,3/2 ⁻ 9/2	0.37 ps + <i>19–9</i>	BC G F BC G	J^{π} : from L(³) J^{π} : log $ft=5.4$ J^{π} : from L(³) J^{π} : from $\gamma(\theta)$	He,d)=2 and γ to $9/2^+$. 4 from $5/2^+$ and $\gamma(\theta)$ in (He,d)=1.) in (p,n γ). log ft =7.1 +5	p,n γ). -4 (log $f^{4u}t=7.9+5-2$)?
1214.55 ^{&} 4 1275.92 5	9/2 ⁻ (3/2) ⁺	$\geq 624 \text{ fs}$ 69 fs +9-8	C GH B D FG	J^{π} : from stre XREF: F(120	tched E2 to $5/2^-$. 54).	

⁹⁵Tc Levels (continued)

E(level) [†]	J ^π ^b	T _{1/2} ‡	XREF	Comments
				J ^{π} : from L(³ He,d)=2. 3/2 ⁺ from av yields in (p, γ). 1/2 ⁻ ,3/2 ⁻ from comparison of statistical theory to 2 ⁺ and 4 ⁺ res yields in (p,n γ) is discrepant.
1281.49 <i>4</i>	7/2 ⁽⁻⁾	134 fs +70-38	CEG	XREF: E(1300). J^{π} : 7/2 from $\gamma(\theta)$ in (p,n γ). 1/2 ⁻ ,7/2 ⁻ from comparison to 2 ⁺ res yield in (p,n γ).
1307.20 6	11/2+	173 fs +28-21	C G	J^{π} : 11/2 from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$; E2 γ to 7/2 ⁺ . T _{1/2} : from DSAM in $(\alpha, 2n\gamma)$.
1407.54 24	$(5/2^{-},7/2^{-})$		В	
1416.41 5	3/2,5/2 ⁽⁻⁾	≥492 fs	FG	J^{π} : 3/2,5/2 from $\gamma(\theta)$ in (p,n γ). $\neq 5/2^+$ from strong γ to $1/2^-$.
1433.25 3	5/2+	57 fs +7-6	B DE G	XREF: E(1450). J ^{π} : log <i>ft</i> =4.7 from 5/2 ⁺ ; D,E2 γ to 9/2 ⁺ ; d γ from 3/2 ⁺ .
1515.25 [#] 12	17/2+	<5 ns	С Н	T _{1/2} : from $\alpha \gamma$ (t) in (α ,2n γ).
1549.46 [@] 9	15/2+		С Н	J^{π} : from stretched E2 γ to $11/2^+$.
1618.53 5	(3/2 ⁺ ,5/2 ⁻)	0.22 ps +18-7	DG	J ^{π} : ≤5/2 from $\gamma(\theta)$ in (p,n γ); ≠1/2 ⁺ from D,E2 γ to 5/2 ⁻ (1974Sa19); 3/2 ⁺ ,5/2 ⁻ from av yields of γ 's leading from res's in (n γ)
1632.03 13	11/2	30 fs +9-7	B G	J^{π} : 5/2,7/2,9/2,11/2 from $\gamma(\theta)$ in (p,n γ); 11/2,13/2,15/2 from D γ to 13/2 ⁺ .
1639.43 6	(3/2-)	83 fs +25-18	B EFG	XREF: E(1660)F(1620).
1 (01 01 1		126 6 20 21		J^{π} : 3/2,5/2 from $\gamma(\theta)$ in (p,n γ). L(d,n)=1+0 for doublet.
1691.31 4	$5/2^+, 1/2^+$ $2/2^+, 5/2(-), 7/2^-$	136 fs + 30 - 21	BC G	J [*] : log ft=5.6 from 5/2'; D,E2 γ to 9/2'.
1094.55 5	5/2 ,5/2 ,1/2	129 18 +30-18	G	$J : 5/2 , 5/2, 7/2$ from $d, E2 \gamma$ s to $5/2$ and $7/2 . \neq 5/2$ from comparison of statistical theory to 4 ⁺ res yield in (p,n γ).
1702.11 ^{&} 10	13/2-		С Н	J^{π} : from stretched E2 γ to 9/2 ⁻ .
1733 10	1/2-,3/2-		F	J^{π} : from L(³ He,d)=1.
1747.02 5	$(5/2)^+$	44 fs +8-7	B DE G	J^{π} : log <i>ft</i> =5.1 from 5/2 ⁺ ; D,E2 γ to 9/2 ⁺ . Possible D,E2 γ to 3/2 ⁻ .
1785.31 8	$(7/2)^+$	40 fs 5	B G	J ^{π} : log <i>ft</i> =5.5 from 5/2 ⁺ ; d,E2 γ to 9/2 ⁺ . 7/2 favored from $\gamma(\theta)$ in (p,n γ).
1837.65? 17	$(7/2^+, 9/2^+)$		B G	J^{π} : from comparison of statistical theory to 4 ⁺ resonance vield in (p,n γ).
1873.9? 10	$(7/2^+, 9/2^+)$		G	J^{π} : from comparison of statistical theory to 4 ⁺ resonance vield in (p. px).
1888.17 9	(5/2 ⁻)		B G	J^{π} : 3/2,5/2,7/2 from γ 's to 5/2 ⁺ and 5/2 ⁻ . 5/2 ⁻ from
				comparison of statistical theory to 4 ⁺ res yield in (p,n γ).
1920.04 6	(1/2 ⁻ ,3/2,5/2)	80 fs +23-16	G	J^{π} : 1/2 ⁻ ,3/2,5/2,7/2 ⁻ from D,E2 γ 's to 3/2 ⁻ and 5/2 ⁻ . \neq 7/2 ⁻ from possible D E2 γ to 3/2 ⁺
1921.01 10	9/2	73 fs +23-16	G	J^{π} : from $\gamma(\theta)$ in (p,n γ).
1930 20	1/2+		E	J^{π} : from angular momentum transfer in (d,n).
1958.98 10	$(5/2^{-})$	≥596 fs	D FG	XREF: $F(1967)$.
				$\gamma(\theta)$ in $(p,n\gamma)$. $\beta/2$, $\gamma/2$, $\gamma/2$ from $\gamma(\theta)$ in $(p,n\gamma)$. $\beta/2$, $\gamma/2$, $\gamma/2$ from comparison of statistical theory to 4^+ res yield in $(p,n\gamma)$.
1978.56 5	3/2+,5/2+,7/2+	40 fs +9-7	BD G	J ^{π} : log <i>ft</i> =4.9 from 5/2 ⁺ . Possible D,Q γ to 9/2 ⁺ discrepant with 3/2 ⁺ ,5/2 ⁻ from av yields of γ 's leading from res's in
2032.34 12	5/2+,7/2,9/2(-)	118 fs +67-35	G	(p, γ). J ^{π} : 5/2,7/2,9/2 from $\gamma(\theta)$ in (p,n γ); D,E2 γ to 9/2 ⁺ .
2086.09 4	3/2+	34 fs +16-11	B FG	Possible D,E2 γ to 5/2 . XREF: F(2077).
2118 12 10	$(7/2^+ 0/2^+)$		C	J [*] : from L(² He,d)=2, γ to $1/2^{-}$ rules out $5/2^{+}$.
2110.11 10	(1/2 ,7/2)		U	yield in $(p,n\gamma)$.

⁹⁵Tc Levels (continued)

E(level) [†]	J ^{πb}	$T_{1/2}^{\ddagger}$	XREF	Comments
2119.64 15	15/2 ⁽⁺⁾	0.20 ps +7-5	С	J ^{π} : 15/2 from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. π =+ from excit in $(\alpha, 2n\gamma)$. T _{1/2} : from DSAM in $(\alpha, 2n\gamma)$.
2164.1? 6			G	
2168.27 4	7/2+	50 fs +11-9	B G	J ^{π} : log ft=4.8 from 5/2 ⁺ ; 7/2 from $\gamma(\theta)$ in (p,n γ).
2183.86 [@] 12	19/2+	0.8 ps +9-5	СН	J^{π} : from stretched E2 γ to 15/2 ⁺ .
2180 10 4	5/2+ 7/2+	$27 f_{0} + 12 = 0$	P C	$T_{1/2}$: from DSAM in (α ,2n γ).
2109.10 4	$(3/2^+, 7/2^+)$	57 18 +12-9	B G	J^{π} . log $f_{\ell}=4.9$ from $5/2^{-4}$, D, Q^{-7} to $9/2^{-4}$.
2210.6? 3	(5/2 ,5/2)		G	$j : \log jt = 0.00$ from $3/2$.
2212.90 ^{&} 13	$(17/2^{-})$	>1.4 ps	СН	J^{π} : from stretched E2 γ to $13/2^{-}$ and (E1) γ to $15/2^{+}$.
	(P*		$T_{1/2}$: from DSAM in (α ,2n γ).
2219.63 20	$(7/2^+)$		G	J^{π} : 5/2,7/2 from γ 's to 9/2 ⁺ and 3/2 ⁺ . 7/2 ⁺ ,9/2 ⁺ from
				comparison of statistical theory to 4^+ res yield in (p,n γ).
2231.5 3	$(17/2^+)$	0.10 ps 3	C	J^{n} : 13/2 ⁺ , 15/2, 17/2 ⁺ from D,E2 γ 's to 13/2 ⁺ and 17/2 ⁺ .
				$15/2, 1/2$ from yield in $(\alpha, 2n\gamma)$; $\neq 15/2$ from $\gamma(\theta)$ in
				T _{1/2} : from DSAM in $(\alpha 2n\gamma)$.
2236.97 20	(≥5/2)		DG	J^{π} : from average yields of γ 's leading from res's in (p, γ).
2240.6? 3			G	
2251.96 14	$(7/2)^+$		B FG	XREF: F(2257).
				J^{n} : log ft=5.2 from 5/2 ⁺ ; γ to 9/2 ⁺ . 7/2 ⁺ , 9/2 ⁺ from
2267 50 8	$(7/2)^+$	$0.22 \text{ ps} \pm 52 - 11$	REC	comparison of of statistical theory 4° res yield in (p,n γ).
2207.39 0	(1/2)	0.22 ps +32-11	DEG	J^{π} : log ft=4.8 from 5/2 ⁺ : γ to 9/2 ⁺ . \neq 5/2 ⁺ from
				comparison to 4^+ res yield in $(p,n\gamma)$.
2318.3? 4	$(5/2^+ \text{ to } 11/2^+)$		EG	XREF: E(2290).
				J^{π} : γ' s to 7/2 ⁺ and 9/2 ⁺ levels.
2324.48 9	5/2+,7/2+		B D FG	XREF: F(2308).
2328 72 13	$(3/2)^+$		R	J^{π} : log $f_{\tau}=4.3$ from $5/2^{-1}$; γ to $9/2^{-1}$. I^{π} : log $f_{\tau}=5.2$ from $5/2^{+1}$: γ to $1/2^{-1}$
2382.3 3	(5/2) $(5/2^+,7/2^+)$		B	J^{π} : log $ft=5.72$ 2.5 from $5/2^+$: γ to $9/2^+$.
2409.54 17	$(5/2^+, 7/2)$		B	J^{π} : log ft=5.4 +9-3 from 5/2 ⁺ ; γ to 9/2 ⁺ .
2454 15			F	
2474.7 4			C	
2546.96 [#] 13	21/2+	2.1 ps +14-7	С Н	J ^{π} : from stretched E2 γ to 17/2 ⁺ .
2550 12	1/0- 2/0-		_	T _{1/2} : from DSAM in $(\alpha, 2n\gamma)$.
2550 12	1/2, $3/2$		F DF	I^{π} ; from every a vields of α' 's leading from res's in (n α)
2696 15	$(\geq 5/2)$ $3/2^+, 5/2^+$		F	f . How average yields of f is leading from less in (p, f) .
2706.5 5	(15/2)		c	J ^{π} : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2780 20	1/2+		EF	XREF: F(2763).
2830 20	3/2+,5/2+		EF	XREF: F(2816).
2844.0 [@] 4	$(23/2^+)$		Н	
2846.8 3	(22.121)		C	
2906.46 14	$(23/2^+)$	0.28 ps 7	C	J [*] : from stretched E2 to $19/2^{+}$.
2038 15	$(1/2^+)$		F	$I_{1/2}^{\pi}$. from $I_{3}^{(3)}(\alpha, 2\pi\gamma)$.
2938 15	(1/2) $(3/2^+ 5/2^+)$		F	I^{π} : from $I_{(3}^{(3)}He^{-(3)}$
3024 07 ^{&} 20	$(3/2^{-}, 3/2^{-})$		с ч	I^{π} : from stretched E2 v to $(17/2^{-})$
3039.27 14	19/2	187 fs +21-49	C	J^{π} : 15/2,17/2,19/2 from $\gamma(\theta)$ in (α ,2n γ). 19/2,21/2,23/2 from dipole γ to 21/2 ⁺ .
				$T_{1/2}$: from DSAM in $(\alpha, 2n\gamma)$.
3065.31 19	$(17/2, 19/2^+)$	0.28 ps +6-7	С	J ^π : 17/2,19/2,21/2 ⁺ from $\gamma(\theta)$ in (α,2nγ). \neq 19/2 ⁻ ,21/2 ⁺

⁹⁵Tc Levels (continued)

E(level) [†]	J ^{πb}	T _{1/2} ‡	XREF	Comments
3119 <i>20</i> 3210	1/2 ⁺ 1/2 ⁺		F EF	from possible D,E2 γ to 15/2 ⁺ . T _{1/2} : from DSAM in (α ,2n γ). J ^{π} : from L(³ He,d)=(0). XREF: F(3197).
3210.3 4	$(21/2)^+$	0.38 ps +6-7	C	J^{π} : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. Stretched or $\Delta J=0 \text{ E2 } \gamma$ to $17/2^+$. T _{1/2} : from DSAM in $(\alpha, 2n\gamma)$.
3339 20	1/2+		F	J^{π} : from L(³ He,d)=(0).
3401 20 3490 20	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺ ,5/2 ⁺		F EF	J [*] : from L(² He,d)=2. XREF: $F(3481)$.
3516.0 [#] 3	25/2+	>5 ps	СН	J ^{π} : from L(³ He,d)=2. J ^{π} : from stretched E2 γ to 21/2 ⁺ .
3520 20	1/2+		F	$T_{1/2}$: from DSAM in (α ,2n γ).
3578.5 7 3650 20	(23/2) $3/2^+ 5/2^+$		C FF	J^{π} : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. XREF: F(3616)
2700 20	5/2 ,5/2			J^{π} : from angular momentum transfer in (d,n) and (³ He,d).
3700 20 3805 14	1/2+		F EF	J^{π} : from angular momentum transfer in (d,n) and (³ He,d).
3821.86 ^{&} 22	$(25/2^{-})$		С Н	J^{π} : from stretched E2 γ to 21/2 ⁻ .
3918.3 [#] 4 3920	29/2 ⁺ 1/2 ⁺		C H EF	J^{π} : from stretched E2 γ to 25/2 ⁺ . XREF: F(3905).
			_	J^{π} : from angular momentum transfer in (d,n).
3986 20	$(3/2^+, 5/2^+)$ $1/2^+$		F	J [*] : from L(³ He,d)=(2). I ^{π} : from angular momentum transfer in (d n)
4081.6 10	$23/2^{-}.25/2^{-}.27/2^{-}$		c	J^{π} : E1+M2 γ to 25/2 ⁺ .
4110 25	$(1/2^+)$		F	J^{π} : from L(³ He,d)=(0).
4110.4 5	(20/2)-		Н	
4127.4 3	(29/2)		Сн	J [*] : from stretched E2 γ to (25/2), consistent with $\gamma(\theta)$ from $(\alpha, 2n\gamma)$.
4180 25	$3/2^+, 5/2^+$		F	J^{π} : from L(³ He,d)=2.
4254 25	3/2 ⁺ ,5/2 ⁺		F	J^{n} : from L(3He,d)=2.
4400	$3/2^+.5/2^+$		E	J^{π} : from angular momentum transfer in (d.n).
4500	3/2+,5/2+		E	J^{π} : from angular momentum transfer in (d,n).
4740 <i>20</i> 4783.7 <i>7</i>	1/2+		E C H	J^{π} : from angular momentum transfer in (d,n).
4971.35 ^{&} 24	(29/2-)		С Н	J ^{π} : from stretched E2 γ to (25/2 ⁻).
5220 20	$1/2^+$		E	J^{π} : from angular momentum transfer in (d,n).
5350 20 5366.8 8	1/2+		E H	J^{n} : from angular momentum transfer in (d,n).
5599.3 [#] 11	$(31/2^+)$		Н	
5643.8 8	$(29/2^+)$ $(21/2^+)$		Н	I^{π} , from M1 or to 20/2 ⁺
5831 6 5	(31/2) $(33/2^{-})$		п	J [*] : If OIII MI1 γ to $29/2$.
5905.4 11	$(33/2^+)$		Н	J . Hom succeed E2 γ to $(25/2)$.
6124.6 6			Н	
6356.7 6			Н	
6619.5 <i>12</i>	$(35/2^+)$		H H	
6668.5 [#] 11	$(33/2^+)$		н	J^{π} : from M1 γ to (31/2 ⁺).
7317.7 6	(35/2-)		H	$T \sim \infty$ $T \sim T$
7920.6 ^{<i>a</i>} 11	$(35/2^{-})$		H	J^{π} : from M1 γ to (33/2 ⁻).
8298.6 11	(35/2)		Н	

95Tc Levels (continued)

E(level) [†]	J ^π ^b	XREF	Comments
8539.7 ^a 12	$(37/2^{-})$	Н	
8971.5 15	$(33/2^+)$	Н	J^{π} : from M1 γ to (31/2 ⁺).
9148.7 <i>16</i>	$(35/2^+)$	Н	
9259.8 ^a 12	$(41/2^{-})$	Н	
10148.8 16	$(37/2^+)$	Н	
10659.9 ^a 13	$(45/2^{-})$	Н	
12078.9 ^a 14	$(47/2^{-})$	Н	
14460.9 17		Н	

[†] From least-squares fit to γ energies, except otherwise noted.

[‡] From DSAM in (p,n γ), except as noted. Only statistical uncertainties are given; the uncertainty due to the stopping power is not included but may be as large as 15%.

[#] Band(A): sequence based on g.s., 9/2⁺.

^(a) Band(a): sequence based on $11/2^+$.

[&] Band(B): sequence based on $1/2^-$.

^{*a*} Band(C): sequence based on $(35/2^{-})$.

^b Most high-spin assignments were taken from ${}^{65}Cu({}^{36}S,\alpha 2n\gamma)$ and are based on γ angular distributions and intensity patterns.

$\gamma(^{95}\text{Tc})$

See ε decay, $(\alpha, 2n\gamma)$, and $(p, n\gamma)$ for unplaced gammas.

6

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α	Comments
38.91	1/2-	38.9 1	100	0.0	9/2+	M4		5.17×10 ⁴ 11	$\alpha(K)=1.158\times 10^4 \ 20; \ \alpha(L)=3.20\times 10^4 \ 8; \ \alpha(M)=7.07\times 10^3 \ 16; \ \alpha(N)=1031 \ 24; \ \alpha(O)=19.3 \ 4 \ \alpha(N+)=1051 \ 24 \ B(M4)(W.u.)=16.4 \ 16 \ E_{\gamma}: from isomeric decay.$
336.413	7/2+	336.43 <i>3</i>	100	0.0	9/2+	M1+E2	+0.33 6	0.0118 3	Mult.: from L-subshell ratios in it decay. $\alpha(K)=0.01030\ 23;\ \alpha(L)=0.00121\ 4;\ \alpha(M)=0.000220\ 6;$ $\alpha(N)=3.48\times10^{-5}\ 9;\ \alpha(O)=2.28\times10^{-6}\ 5$ $\alpha(N+)=3.71\times10^{-5}\ 10$ E _w : weighted average of 336.40 10 (⁹⁵ Ru ε decay). 336.48 5
									(³ Nb(α ,2n γ)), 336.40 4 (⁹⁵ Mo(p,n),(p,n γ)). Mult.: from ⁹³ Nb(α ,2n γ). δ: from ⁹⁵ Mo(p,n),(p,n γ).
626.86	5/2+	290.39 6	21.5 3	336.413	7/2+	(M1+E2)	+0.17 17	0.0165 10	$\alpha(K)=0.0144 \ 8; \ \alpha(L)=0.00169 \ 13; \ \alpha(M)=0.000307 \ 23; \\ \alpha(N)=4.9\times10^{-5} \ 4; \ \alpha(O)=3.23\times10^{-6} \ 15 \\ \alpha(N+)=5.2\times10^{-5} \ 4$
									 E_γ: weighted average of 290.38 <i>10</i> (⁹⁵Ru ε decay), 290.54 <i>5</i> (⁹³Nb(α,2nγ)), 290.33 <i>3</i> (⁹⁵Mo(p,n),(p,nγ)). I_γ: weighted average of 20.7 <i>6</i> (⁹⁵Ru ε decay), 21.65 <i>24</i> (⁹³Nb(α,2nγ)). Mult.: D+Q from ⁹³Nb(α,2nγ), adopting (M1+E2) from level scheme.
		626.77 5	100.0 <i>10</i>	0.0	9/2+	(E2(+M3))	0.9 7	0.010 7	δ: from ⁹³ Nb(α,2nγ). α (K)=0.009 6; α (L)=0.0011 8; α (M)=0.00020 14; α (N)=3.2×10 ⁻⁵ 22; α (O)=2.0×10 ⁻⁶ 14 α (N+)=3.4×10 ⁻⁵ 24 Mult.: Q(+O) from $\gamma(\theta)$ in (α,2nγ), Δπ=no from level scheme.
646.55	3/2-	607.59 7	100	38.91	1/2-	(M1)		0.00268 4	δ: from α(K)exp in (α,2nγ) assuming E2+M3. Sign may be negative since δ=−0.58 ∞ from γ(θ) in (α,2nγ). E _γ : weighted average of 626.83 10 (⁹⁵ Ru ε decay), 626.8 1 (⁹³ Nb(α,2nγ)), 626.73 6 (⁹⁵ Mo(p,n),(p,nγ)). α(K)=0.00236 4; α(L)=0.000268 4; α(M)=4.86×10 ⁻⁵ 7;
									$\alpha(N) = \frac{1}{4 \times 10^{-6}} I1; \ \alpha(O) = 5.25 \times 10^{-7} 8$ $\alpha(N+) = 8.7 \times 10^{-6} 5$ B(M1)(W.u.) = 0.22 + 10 - 22

⁹⁵₄₃Tc₅₂-6

						Adopte	d Levels, Ga	mmas (contin	ued)
							γ ⁽⁹⁵ Tc) (co	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α	Comments
	_								E _γ : weighted average of 607.3 5 (⁹⁵ Ru ε decay), 607.82 15 (⁹³ Nb(α ,2n γ)), 607.56 6 (⁹⁵ Mo(p,n),(p,n γ)). Mult.: d(+Q) in ⁹³ Nb(α ,2n γ), adopting (M1) from level scheme.
667.82	5/2-	331.38 7	1.94 20	336.413	7/2+				E _{γ} : weighted average of 331.39 9 (⁹⁵ Ru ε decay), 331.37 10 (⁹⁵ Mo(p,n),(p,n γ)).
		628.92 6	100.0 9	38.91	1/2-	E2(+M3)	0.08 17	0.0027 9	$ α(K)=0.0024 \ 8; \ α(L)=0.00028 \ 10; \ α(M)=5.2×10^{-5} \ 18; α(N)=8.E-6 \ 3; \ α(O)=5.2×10^{-7} \ 18 α(N+)=9.E-6 \ 3 Mult.,δ: from α(K)exp in (α,2nγ). Sign may be negative since δ=-0.11 ∞ from γ(θ) in (α,2nγ) $
									E _γ : weighted average of 629.0 I (⁹³ Nb(α ,2n γ)), 628.92 6 (⁹⁵ Mo(p,n),(p,n γ)). I _γ : from ⁹⁵ Mo(p,n),(p,n γ).
882.23	13/2+	882.17 8	100	0.0	9/2+	E2(+M3)	-0.03 5	0.00111 4	$\alpha(K)=0.00098 \ 3; \ \alpha(L)=0.000113 \ 4; \ \alpha(M)=2.04\times10^{-5} \ 7; \\ \alpha(N)=3.24\times10^{-6} \ 10; \ \alpha(O)=2.12\times10^{-7} \ 7 \\ \alpha(N+)=3.45\times10^{-6} \ 11 \\ B(E2)(W.u.)=(34 + 15 - 32); \ B(M3)(W.u.)=(3.E+5 + 10 - 3) \\ Mult.,\delta: \ from \ \gamma(\theta) \ in \ (\alpha, 2n\gamma) \ and \ comparison \ to \ RUL.$
927.81	3/2+	301.00 <i>5</i>	100.0 <i>6</i>	626.86	5/2+	(M1+E2)	-0.21 3	0.01519 25	Possibly stretched or ΔJ=0 Q. E_{γ} : weighted average of 882.36 <i>10</i> (⁹³ Nb(α,2nγ)), 882.10 6 (⁹⁵ Mo(p,n),(p,nγ)), 882.3 4 (⁶⁵ Cu(³⁶ S,α2nγ)). α(K)=0.01330 22; α(L)=0.00156 3; α(M)=0.000283 5; α(N)=4.49×10 ⁻⁵ 8; α(O)=2.97×10 ⁻⁶ 5 α(N+)=4.79×10 ⁻⁵ 9 Mult.,δ: D+Q from γ(θ) in (p,nγ). Δπ=no from the level
		591.42 5	52.8 8	336.413	7/2+	(E2(+M3))	+0.15 10	0.0035 8	scheme. E _γ : weighted average of 301.01 <i>10</i> (⁹⁵ Ru ε decay), 301.11 6 (⁹³ Nb(α,2nγ)), 300.95 4 (⁹⁵ Mo(p,n),(p,nγ)). I _γ : weighted average of 100.0 7 (⁹³ Nb(α,2nγ)), 100.0 9 (⁹⁵ Mo(p,n),(p,nγ)). $\alpha(K)=0.0031$ 7; $\alpha(L)=0.00037$ 9; $\alpha(M)=6.8\times10^{-5}$ <i>16</i> ; $\alpha(N)=1.07\times10^{-5}$ 25; $\alpha(O)=6.8\times10^{-7}$ <i>16</i> $\alpha(N+)=1.1\times10^{-5}$ 3 Mult.: Q(+O) from $\gamma(\theta)$ in (p,nγ). $\Delta\pi$ =no from the level scheme. E _γ : weighted average of 591.42 <i>10</i> (⁹⁵ Ru ε decay), 591.36 7

⁹⁵₄₃Tc₅₂-7

						Adopted	Levels, Gam	mas (continued	
							$\gamma(^{95}\text{Tc})$ (con	tinued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α	Comments
927.81	3/2+	888.91 4	66 4	38.91	1/2-	(E1)		0.000446 7	$({}^{93}Nb(\alpha,2n\gamma)), 591.50 \ 8 \ ({}^{95}Mo(p,n),(p,n\gamma)).$ I _γ : weighted average of 56.3 23 (${}^{95}Ru \ \varepsilon \ decay), 53.8 \ 4 \ ({}^{93}Nb(\alpha,2n\gamma)), 51.7 \ 4 \ ({}^{95}Mo(p,n),(p,n\gamma).$ $\alpha(K)=0.000393 \ 6; \ \alpha(L)=4.38\times10^{-5} \ 7; \ \alpha(M)=7.90\times10^{-6} \ 11; \ \alpha(N)=1.258\times10^{-6} \ 18 \ \alpha(O)=8.48\times10^{-8} \ 12; \ \alpha(N+)=1.343\times10^{-6} \ 19$
									Mult.: D from $\gamma(\theta)$ in (p,ηγ). $\Delta \pi$ =yes from level scheme. E _γ : weighted average of 889.00 <i>10</i> (⁹⁵ Ru ε decay), 888.86 <i>11</i> (⁹³ Nb(α,2nγ)), 888.90 5 (⁹⁵ Mo(p,n),(p,nγ)). I _γ : weighted average of 91 5 (⁹⁵ Ru ε decay), 67.5 <i>11</i> (⁹³ Nb(α,2nγ)), 61.1 <i>15</i> (⁹⁵ Mo(p,n),(p,nγ)).
956.99	11/2+	620.2 [@] 5	2.0 10	336.413	7/2+	[E2]		0.00273 4	$\alpha(K)=0.00239 \ 4; \ \alpha(L)=0.000284 \ 4; \ \alpha(M)=5.14\times10^{-5} \ 8; \\ \alpha(N)=8.11\times10^{-6} \ 12; \ \alpha(O)=5.13\times10^{-7} \ 8 \\ \alpha(N+)=8.62\times10^{-6} \ 13 \\ B(E2)(W.u.)=3.6 \ +20-23 \\ E_{-L}(u,u)=0.64 \ and u, by (u, 2u))$
		957.00 <i>16</i>	100.0 <i>10</i>	0.0	9/2+	M1+E2	-2.1 1	0.000924 <i>13</i>	
1033.87?	$(1/2^+)$	994.95 [@] 5	100	38.91	$1/2^{-}$	D			
1084.97	(5/2)+	157.4 [@] 3	<1.05	927.81	3/2+	[M1,E2]		0.16 9	$\alpha(K)=0.14\ 7;\ \alpha(L)=0.020\ 12;\ \alpha(M)=0.0037\ 23;\ \alpha(N)=0.0006$ $4;\ \alpha(O)=2.8\times10^{-5}\ 12$ $\alpha(N+)=0.0006\ 4$ B(M1)(W.u.)<0.082 E. L: from (α 2ny)
		458.0 <i>2</i> 748.56 <i>5</i>	3.4 <i>4</i> 100 <i>6</i>	626.86 336.413	5/2 ⁺ 7/2 ⁺				E_{γ}, I_{γ} : from ($\alpha, 2n\gamma$). E_{γ}, I_{γ} : from ($\alpha, 2n\gamma$). E_{γ} : weighted average of 748.68 <i>16</i> (⁹³ Nb($\alpha, 2n\gamma$)), 748.55 <i>5</i> (⁹⁵ Mo(p,n),(p,n\gamma)). L : from ($\alpha, 2n\gamma$)
1178.60	7/2+	1084.98 7 551.74 <i>4</i>	1.89 <i>21</i> 46 7	0.0 626.86	9/2 ⁺ 5/2 ⁺	M1+E2	-0.22 10	0.00338 6	$\begin{aligned} & E_{\gamma}, I_{\gamma}: \text{ from } (\alpha, 2\pi\gamma). \\ & E_{\gamma}, I_{\gamma}: \text{ from } (\alpha, 2\pi\gamma). \\ & \alpha(K) = 0.00297 5; \ \alpha(L) = 0.000340 \ 6; \ \alpha(M) = 6.15 \times 10^{-5} \ 10; \\ & \alpha(N) = 9.79 \times 10^{-6} \ 16; \ \alpha(O) = 6.60 \times 10^{-7} \ 10 \\ & \alpha(N+) = 1.045 \times 10^{-5} \ 17 \end{aligned}$

 ∞

From ENSDF

Т

						Adop	oted Levels, Gam	nas (continued)	
							$\gamma(^{95}\text{Tc})$ (cont	inued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α	Comments
1178.60	7/2+	842.18 6	35 6	336.413	7/2+	M1(+E2)	+0.04 +40-25	0.001277 19	B(E2)(W.u.)=14 +13-14; B(M1)(W.u.)=0.09 +3-5 Mult.,δ: D+Q from γ(θ) in (p,nγ). ≠E1+M2 from δ and comparison to RUL. E _γ : weighted average of 551.62 10 (⁹⁵ Ru ε decay), 551.8 2 (⁹³ Nb(α,2nγ)), 551.76 5 (⁹⁵ Mo(p,n),(p,nγ)). I _γ : weighted average of 33.1 12 (⁹⁵ Ru ε decay), 47 3 (⁹³ Nb(α,2nγ)), 54.1 10 (⁹⁵ Mo(p,n),(p,nγ)). α(K)=0.001123 17; α(L)=0.0001268 18; α(M)=2.29×10 ⁻⁵ 4 α(O)=2.49×10 ⁻⁷ 4; α(N+)=3.91×10 ⁻⁶
									B(M1)(W.u.)=(0.019 +6−11) E _γ : weighted average of 842.16 10 (⁹⁵ Ru ε decay), 842.2 2 (⁹³ Nb(α,2nγ)), 842.19 8 (⁹⁵ Mo(p,n),(p,nγ)). I _γ : weighted average of 24.6 10 (⁹⁵ Ru ε decay), 35 4 (⁹³ Nb(α,2nγ)), 41.2 8 (⁹⁵ Mo(p,n),(p,nγ)). Mult.,δ: D+Q from γ(θ) in (p,nγ). ≠E1+M2 from level scheme.
		1178.67 6	100.0 13	0.0	9/2+	M1+E2	+0.41 +22-16	0.000614 11	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000537 \ 10; \ \alpha(\mathbf{L}) = 6.02 \times 10^{-5} \ 10; \ \alpha(\mathbf{M}) = 1.089 \times 10^{-5} \\ &I8 \\ &\alpha(\mathbf{O}) = 1.185 \times 10^{-7} \ 22; \ \alpha(\mathbf{N}+) = 6.05 \times 10^{-6} \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.u.) = 2.1 \ + 20 - 21; \ \mathbf{B}(\mathbf{M}1)(\mathbf{W}.u.) = 0.017 \ + 5 - 10 \\ &\mathbf{E}_{\gamma}: \text{ weighted average of } 1178.7 \ 2 \ (^{95}\text{Ru} \ \varepsilon \text{ decay}), \ 1178.80 \\ &22 \ (^{93}\text{Nb}(\alpha, 2n\gamma)), \ 1178.66 \ 6 \ (^{95}\text{Mo}(\mathbf{p}, \mathbf{n}), (\mathbf{p}, n\gamma)). \\ &\mathbf{I}_{\gamma}: \text{ weighted average of } 100 \ 5 \ (^{95}\text{Ru} \ \varepsilon \text{ decay}), \ 100 \ 5 \\ &(^{93}\text{Nb}(\alpha, 2n\gamma)), \ 100.0 \ 14 \ (^{95}\text{Mo}(\mathbf{p}, \mathbf{n}), (\mathbf{p}, n\gamma)). \\ &\mathbf{Mult}, \delta: \ \mathbf{D} + \mathbf{Q} \ \text{from } \gamma(\theta) \ \text{in } (\mathbf{p}, n\gamma). \ \neq \mathbf{E1} + \mathbf{M2} \ \text{from level} \\ &\text{scheme} \end{aligned}$
1213.13	9/2	876.80 <i>9</i>	100.0 <i>16</i>	336.413	7/2+				E _γ : weighted average of 876.7 <i>3</i> (95 Ru ε decay), 876.8 <i>2</i> (93 Nb(α,2nγ)), 876.81 <i>10</i> (95 Mo(p,n),(p,nγ)). I _γ : from (α,2nγ).
		1213.07 7	10.3 3	0.0	9/2+				E _γ : weighted average of 1213.10 <i>10</i> (93 Nb(α ,2n γ)), 1212.8 2 (95 Mo(p,n),(p,n γ)). L ₂ : from (α 2n γ)
1214.55	9/2-	546.72 4	100.0 14	667.82	5/2-	E2(+M3)	-0.16 20	0.0045 24	$\begin{aligned} &\alpha(K) = 0.0039 \ 20; \ \alpha(L) = 0.0005 \ 3; \ \alpha(M) = 9.E - 5 \ 5; \\ &\alpha(N) = 1.4 \times 10^{-5} \ 8; \ \alpha(O) = 9.E - 7 \ 5 \\ &\alpha(N+) = 1.5 \times 10^{-5} \ 9 \\ &\delta: \ from \ (\alpha, 2n\gamma), \ other: \ \delta = +0.50 \ +13 - 9 \ from \ \gamma(\theta) \ in \ (p,n\gamma) \\ &discrepant. \\ &E_{\gamma}: \ weighted \ average \ of \ 546.73 \ 5 \ (^{93}Nb(\alpha, 2n\gamma)), \ 546.71 \ 5 \\ &(^{95}Mo(p,n),(p,n\gamma)), \ 547.0 \ 4 \ (^{65}Cu(^{36}S,\alpha 2n\gamma)). \\ &I_{\gamma}: \ from \ (\alpha, 2n\gamma). \end{aligned}$

⁹⁵₄₃Tc₅₂-9

						Adopte	d Levels, Gammas	s (continued)	
							$\gamma(^{95}\text{Tc})$ (continu	(ied)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α	Comments
1214.55	9/2-	878.35 9	24.7 24	336.413	7/2+	D(+Q)			E_{γ} : weighted average of 878.27 24 (⁹³ Nb(α,2nγ)), 878.36 10 (⁹⁵ Mo(p,n),(p,nγ)). I_{γ} : from (α,2nγ). Mult : from (α 2nγ)
		1214.47 10	23 3	0.0	9/2+	D			E _γ : weighted average of 1214.55 <i>11</i> (93 Nb(α,2nγ)), 1214.37 <i>10</i> (95 Mo(p,n),(p,nγ)), 1215.1 <i>4</i> (65 Cu(36 S,α2nγ)). I _γ : from (α,2nγ). Mult.: from (95 Mo(p,n),(p,nγ)),
1275.92	$(3/2)^+$	608.20 5	45 10	667.82	5/2-	D			E_{γ} , I_{γ} ,Mult.: Observed only by ⁹⁵ Mo(p,n),(p,n γ).
		942 [@]		336.413	7/2+				E_{γ} : Observed only by (p,γ) .
		1236.88 10	100.0 14	38.91	1/2-	D(+Q)	+0.12 60		E _{γ} : weighted average of 1236.5 <i>3</i> (⁹⁵ Ru ε decay), 1236.91 8 (⁹⁵ Mo(p,n),(p,n γ)). L. Mult δ : from ⁹⁵ Mo(p,n) (p,n γ)
1281.49	7/2 ⁽⁻⁾	613.68 4	100.0 5	667.82	5/2-	(M1)		0.00262 4	$\begin{aligned} &\alpha(K) = 0.00230 \ 4; \ \alpha(L) = 0.000262 \ 4; \ \alpha(M) = 4.74 \times 10^{-5} \ 7; \\ &\alpha(N) = 7.56 \times 10^{-6} \ 11; \ \alpha(O) = 5.13 \times 10^{-7} \ 8 \\ &\alpha(N+) = 8.07 \times 10^{-6} \ 12 \\ &B(M1)(W.u.) = 0.54 \ + 16 - 28 \\ &E_{\gamma}: \ weighted \ average \ of \ 613.73 \ 10 \ (^{93}Nb(\alpha, 2n\gamma)), \ 613.67 \ 5 \\ &(^{95}Mo(p,n),(p,n\gamma)). \\ &I_{\gamma}: \ from \ (\alpha, 2n\gamma). \\ &Mult.: \ D \ from \ (p,n\gamma), \ adopting \ (M1) \ from \ level \ scheme. \end{aligned}$
		945.05 <i>5</i>	13.0 <i>5</i>	336.413	7/2+	(E1+M2)	-0.38 +31-73	0.0007 9	α(K)=0.0006 8; α(L)=6.E-5 9; α(M)=1.2×10-5 16; α(N)=2.E-6 3; α(O)=1.3×10-7 18 α(N+)=2.E-6 3 B(E1)(W.u.)=(0.00025 +9-14); B(M2)(W.u.)=(2.E+2 +3-2) Mult: D+Q from γ(θ) in (p,nγ). Δπ=yes from level scheme. Eγ: weighted average of 945.06 6 (93Nb(α,2nγ)), 945.03 10 (95Mo(p,n),(p,nγ)). Lγ: from (α,2nγ).
		1281.53 9	19.3 <i>5</i>	0.0	9/2+	(E1+M2)	+0.53 +60-30	0.0005 3	

I.

					Ado	pted Levels,	Gammas (cont	inued)
						$\gamma(^{95}\text{Tc})$	(continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α	Comments
1307.20	11/2+	970.80 14	22 5	336.413	7/2+	E2	0.000885 13	$\begin{aligned} &\alpha(K) = 0.000777 \ 11; \ \alpha(L) = 8.91 \times 10^{-5} \ 13; \ \alpha(M) = 1.612 \times 10^{-5} \ 23 \\ &\alpha(O) = 1.691 \times 10^{-7} \ 24; \ \alpha(N+) = 2.73 \times 10^{-6} \\ &B(E2)(W.u.) = 27 \ +7-8 \\ &Mult.: \ Q \ from \ \gamma(\theta) \ in \ (p,n\gamma). \ \neq M2 \ from \ comparison \ to \ RUL. \end{aligned}$
		1307.18 7	100 4	0.0	9/2+	(M1+E2)	0.000504 16	E _γ ,I _γ : from (α,2nγ). $\alpha(K)=0.000421$ 16; $\alpha(L)=4.73\times10^{-5}$ 16; $\alpha(M)=8.6\times10^{-6}$ 3; $\alpha(N)=1.36\times10^{-6}$ 5 $\alpha(O)=9.3\times10^{-8}$ 4; $\alpha(N+)=2.64\times10^{-5}$ 24 Mult.: M+Q in (α,2nγ), adopting (M1+E2) from level scheme. E _γ ,I _γ : from (α,2nγ).
1407.54	(5/2 ⁻ ,7/2 ⁻)	1070.81 1407.55 25	100.0 22	336.413 0.0	7/2 ⁺ 9/2 ⁺			
1416.41	3/2,5/2 ⁽⁻⁾	748.55 <i>5</i> 769.86 <i>6</i> 1377.63 <i>10</i>	100 20 49.7 9 16.5 5	667.82 646.55 38.91	$5/2^{-}$ $3/2^{-}$ $1/2^{-}$			E_{γ}, I_{γ} : from (p,n γ). E_{γ}, I_{γ} : from (p,n γ). E_{γ}, I_{γ} : from (p,n γ).
1433.25	5/2+	254.47 14	1.04 5	1178.60	7/2+	(M1)	0.0226	$\alpha(K)=0.0198^{-3}$; $\alpha(L)=0.00231^{-4}$; $\alpha(M)=0.000420^{-6}$; $\alpha(N)=6.68\times10^{-5}^{-5}10$; $\alpha(O)=4.45\times10^{-6}^{-7}7^{-6}^{-7}$ $\alpha(N+)=7.12\times10^{-5}^{-5}10^{-6}^{-7}^{-7}^{-7}^{-7}^{-7}^{-7}^{-7}^{-7$
		348.25 10	0.99 5	1084.97	(5/2)+	(M1)	0.01023	
		505.1 3	0.57 24	927.81	3/2+	D,E2		E _γ : weighted average of 504.8 3 (95 Ru ε decay), 505.4 3 (95 Mo(p,n),(p,nγ)). I _γ : from 95 Ru ε decay. Mult : from ${}^{9(\theta)}$ in (n nγ) and level scheme
		786.8 [@] 4	0.24 19	646.55	3/2-	(E1)	0.000571 8	$\alpha(K)=0.000503 \ 7; \ \alpha(L)=5.62\times10^{-5} \ 8; \ \alpha(M)=1.015\times10^{-5} \ 15$ $\alpha(O)=1.085\times10^{-7} \ 16; \ \alpha(N+)=1.724\times10^{-6} \ 25$ B(E1)(W.u.)=2.2×10^{-5} \ 18

						Adopted	Levels, Gai	nmas (continue	ed)
							γ(⁹⁵ Tc) (co	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α	Comments
1433.25	5/2+	806.31 4	19.3 8	626.86	5/2+	D,E2			 Mult.: d,Q from comparison to RUL. ΔJ^π=1,yes from level scheme. E_γ,I_γ: from ⁹⁵Ru ε decay. E_γ: weighted average of 806.28 <i>10</i> (⁹⁵Ru ε decay), 806.32 <i>5</i> (⁹⁵Mo(p,n),(p,n)). I_γ: from ⁹⁵Ru ε decay.
		1096.76 6	100 5	336.413	7/2+	M1+E2		0.000695 25	Mult.: from $\gamma(\theta)$ in (p,n γ) and level scheme. $\alpha(K)=0.000611\ 23;\ \alpha(L)=6.91\times10^{-5}\ 21;\ \alpha(M)=1.25\times10^{-5}\ 4;\ \alpha(N)=1.99\times10^{-6}\ 7$ $\alpha(O)=1.34\times10^{-7}\ 6;\ \alpha(N+)=2.12\times10^{-6}\ 7$ B(E2)(W.u.) $\geq 3.6\ 4;\ B(M1)(W.u.)\geq 0.153\ 21$ Mult.: D+Q from $\gamma(\theta)$ in (p,n γ). \neq E1+M2 from δ and comparison to RUL.
		1433.19 9	3.07 19	0.0	9/2+	(E2)		0.000443 7	E _γ : weighted average of 1096.80 <i>10</i> (⁹⁵ Ru ε decay), 1096.73 8 (⁹⁵ Mo(p,n),(p,nγ)). I _γ : from ⁹⁵ Ru ε decay. α (K)=0.000337 5; α (L)=3.79×10 ⁻⁵ 6; α (M)=6.85×10 ⁻⁶ 10; α (N)=1.090×10 ⁻⁶ 16 α (O)=7.35×10 ⁻⁸ 11; α (N+)=6.16×10 ⁻⁵ 9 B(E2)(W.u)=1.56 +21-23 E _γ : weighted average of 1433.28 10 (⁹⁵ Ru ε decay), 1433.10 10 (⁹⁵ Mo(n,n) (p, nγ))
1515.25	17/2+	632.95 16	100	882.23	13/2+	E2(+M3)	-0.03 5	0.00260 <i>10</i>	$I_{\gamma}: \text{ from } {}^{95}\text{Ru } \varepsilon \text{ decay.}$ Mult.: from level scheme. $\alpha(\text{K})=0.00227 \ 8; \ \alpha(\text{L})=0.000269 \ 11; \ \alpha(\text{M})=4.88\times10^{-5} \ 19;$ $\alpha(\text{N})=7.7\times10^{-6} \ 3; \ \alpha(\text{O})=4.89\times10^{-7} \ 20$ $\alpha(\text{N}+)=8.2\times10^{-6} \ 4$ $E_{\gamma}: \text{ weighted average of } 632.88 \ 18 \ ({}^{93}\text{Nb}(\alpha,2n\gamma)), \ 633.3 \ 4$ $({}^{65}\text{Cu}({}^{36}\text{S},\alpha2n\gamma)).$
1549.46	15/2+	592.51 8	100 4	956.99	11/2+	(E2)		0.00310 5	

From ENSDF

 $^{95}_{43}$ Tc₅₂-12

⁹⁵₄₃Tc₅₂-12

					Ad	opted Leve	els, Gammas	(continued)	
						$\gamma(^{95}$	Tc) (continue	ed)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\ddagger}	α	Comments
1549.46	15/2+	667.16 9	89 <i>3</i>	882.23	13/2+	M1+E2	+0.76 20	0.00219 4	$\frac{({}^{65}\text{Cu}({}^{36}\text{S},\alpha 2n\gamma)).}{\text{Mult.},\delta: \text{ from deduced R=1.8 } 2 ({}^{65}\text{Cu}({}^{36}\text{S},\alpha 2n\gamma).}{\alpha(\text{K})=0.00192 } 3; \alpha(\text{L})=0.000221 4; \alpha(\text{M})=4.01\times10^{-5} 7; \alpha(\text{N})=6.37\times10^{-6} 11; \alpha(\text{O})=4.23\times10^{-7} 6 \\ \alpha(\text{N}+)=6.79\times10^{-6} 11$
									B(E2)(W.u.)>0.0038; B(M1)(W.u.)>3.6×10 ⁻⁶ E _y : weighted average of 667.15 9 (93 Nb(α ,2n γ)), 667.3 4 (65 Cu(36 S, α 2n γ)). I _y : weighted average of 90 3 (93 Nb(α ,2n γ)), 83 10 (65 Cu(36 S, α 2n γ). Mult δ : from (α 2n ϕ): supported by deduced P=1.6.2 from
1 (10 50			20 (17	1075.00	(2/2)+	5			$(^{65}Cu(^{36}S,\alpha 2n\gamma).$
1618.53	(3/2+,5/2-)	342.64 5 950.68 5 972.0 2 1579 54 10	29.6 17 100 3 40 3 71 0 20	1275.92 667.82 646.55 38.91	$(3/2)^+$ $5/2^-$ $3/2^-$ $1/2^-$	D D,E2 D,Q D,Q			$E_{\gamma}, I_{\gamma}, Mult.:$ from $(p, n\gamma)$. $E_{\gamma}, I_{\gamma}, Mult.:$ from $(p, n\gamma)$. $E_{\gamma}, I_{\gamma}, Mult.:$ from $(p, n\gamma)$. $E_{\gamma}, I_{\gamma}, Mult.:$ from $(p, n\gamma)$.
1632.03	11/2	750 1	100 21	882.23	$\frac{1}{2}$ $\frac{1}{2}$	D,Q D			$E_{\gamma,I_{\gamma}}$, which from (p,n_{γ}) . $E_{\gamma,I_{\gamma}}$: from (p,n_{γ}) . Mult : from level scheme.
		1632.01 <i>13</i>	72 7	0.0	9/2+	D+Q	+0.14 9		E_{γ}, I_{γ} : from (p,nγ). Mult.,δ: from $\gamma(\theta)$ in (p,nγ).
1639.43	(3/2 ⁻)	711.61 5	100.0 17	927.81	3/2+	D			E _{γ} : weighted average of 711.54 20 (⁹⁵ Ru ε decay), 711.61 5 (⁹⁵ Mo(p,n),(p,n γ)).
									$^{(95)}$ Mo(p,n),(p,n γ)).
		992.3 [@] 5	14.9 20	646.55	3/2-	D,E2			E_{γ} : weighted average of 992.3 7 (⁹⁵ Ru ε decay), 992.33 70 (⁹⁵ Mo(p,n),(p,nγ)).
									I_{γ} : weighted average of 15 4 (⁵⁵ Ru ε decay), 14.9 23 (⁹⁵ Mo(p,n),(p,n γ)).
1691.31	5/2+,7/2+	606.3 4	11.3 11	1084.97	(5/2)+	D,E2			E_{γ} : weighted average of 606.3 5 (⁹⁵ Ru ε decay), 606.3 5 (⁹⁵ Mo(p,n),(p,n γ)).
									I_{γ} : weighted average of 10 4 (⁵⁵ Ru ε decay), 11.4 <i>I</i> 2 (⁹⁵ Mo(p,n),(p,nγ)).
		1064.41 5	81.8 <i>16</i>	626.86	5/2+	D,E2			E _γ : weighted average of 1064.39 <i>10</i> (95 Ru ε decay), 1064.42 <i>6</i> (95 Mo(p,n),(p,nγ)). I _γ : weighted average of 95 <i>8</i> (95 Ru ε decay), 81.6 <i>10</i>
		1355.09 14	100 3	336.413	7/2+	D,E2			(~ Mo(p,n),(p,nγ)). E_{γ} : weighted average of 1355.1 2 (⁹⁵ Ru ε decay), 1354.7 8 (⁹³ Nb(α,2nγ)), 1355.10 20 (⁹⁵ Mo(p,n),(p,nγ)).

From ENSDF

⁹⁵₄₃Tc₅₂-13

L.

					Adopte	ed Levels, Ga	mmas (co	ntinued)	
						γ (⁹⁵ Tc) (c	ontinued)		
E _i (level)	J_i^π	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α	Comments
1691.31	5/2+,7/2+	1691.36 9	13.2 8	0.0	9/2+	D,E2			I _γ : weighted average of 100 <i>6</i> (⁹⁵ Ru ε decay), 100 <i>4</i> (95 Mo(p,n),(p,nγ)). E _γ : weighted average of 1691.4 2 (95 Ru ε decay), 1691.35 <i>10</i> (95 Mo(p,n),(p,nγ. I _γ : weighted average of 11.4 <i>13</i> (95 Ru ε decay), 13.6
1694.53	3/2+,5/2(-),7/2-	1026.71 <i>6</i> 1047.94 <i>6</i> 1067.96 <i>15</i> 1358 07 <i>10</i>	100.0 <i>16</i> 85.8 <i>16</i> 67 <i>3</i> 63 9 <i>10</i>	667.82 646.55 626.86 336.413	5/2 ⁻ 3/2 ⁻ 5/2 ⁺ 7/2 ⁺	D,E2 D,E2 D,E2 D,E2			6 (95 Mo(p,n),(p,n γ)). E_{γ} , I_{γ} ,Mult.: from (p,n γ). E_{γ} , I_{γ} ,Mult.: from (p,n γ). E_{γ} , I_{γ} ,Mult.: from (p,n γ). E. L. Mult.: from (p,n γ).
1702.11	13/2-	487.73 13	61 <i>13</i>	336.413 1214.55	9/2 ⁻	D,E2 E2		0.00542 8	E _γ ,h _γ ,Mult.: from (p,hγ). $\alpha(K)=0.00472 \ 7; \ \alpha(L)=0.000576 \ 8; \ \alpha(M)=0.0001045 \ 15; \ \alpha(N)=1.642\times10^{-5} \ 23 \ \alpha(O)=1.006\times10^{-6} \ 14; \ \alpha(N+)=1.75\times10^{-5} \ 11 \ E_{\gamma}:$ weighted average of 487.75 7 (⁹³ Nb(α ,2n γ)), 487.0 4 (⁶⁵ Cu(³⁶ S, α 2n γ)). I _γ : from (⁹³ Nb(α ,2n γ)). Mult., δ : from (α ,2n γ); supported by deduced R=1.9 3 from (⁶⁵ Cu(³⁶ S α 2n γ)))
		745.00 11	100 <i>10</i>	956.99	11/2+	E1(+M2)	0.00 5	0.000641 <i>14</i>	$\alpha(K) = 0.000564 \ 12; \ \alpha(L) = 6.31 \times 10^{-5} \ 14; \alpha(M) = 1.140 \times 10^{-5} \ 25 \alpha(O) = 1.22 \times 10^{-7} \ 3; \ \alpha(N+) = 1.93 \times 10^{-6} E_{\gamma}: weighted average of 744.97 \ 9 \ (^{93}Nb(\alpha,2n\gamma)), 745.5 \ 4 \ (^{65}Cu(^{36}S,\alpha 2n\gamma)). I_{\gamma}: from \ (^{93}Nb(\alpha,2n\gamma)). Mult.: from \ (^{65}Cu(^{36}S,\alpha 2n\gamma)) and level scheme; Intensity ratio R not consistent with M1 assignment.$
1747.02	(5/2)+	312.6 [@] 8	96	1433.25	5/2+	(M1)		0.01341 21	$\alpha(K)=0.01175 \ 19; \ \alpha(L)=0.001364 \ 21; \alpha(M)=0.000247 \ 4; \ \alpha(N)=3.93\times10^{-5} \ 6; \alpha(O)=2.63\times10^{-6} \ 4 \alpha(N+)=4.20\times10^{-5} \ 7 B(M1)(W.u.)=0.8 \ 6 E_{\rm w} L_{\rm w}$ from ⁹⁵ Ru ε decay.
		819.19 <i>11</i>	25.9 12	927.81	3/2+	D,E2			E _γ : weighted average of 819.07 <i>10</i> (⁹⁵ Ru ε decay), 819.3 <i>1</i> (⁹⁵ Mo(p,n),(p,nγ)). I_{γ} : from ⁹⁵ Ru ε decay.
		1100 [@] I	4.8 20	646.55	3/2-	(E1)		0.000301 7	α (K)=0.000261 4; α (L)=2.90×10 ⁻⁵ 4; α (M)=5.23×10 ⁻⁶ 8; α (N)=8.33×10 ⁻⁷ 12 α (O)=5.64×10 ⁻⁸ 8; α (N+)=6.E-6 5

L.

	Adopted Levels, Gammas (continued)													
					$\gamma(^{95})$	Гс) (contin	ued)							
E _i (level)	J_i^π	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [†]	α	Comments						
1747.02	(5/2)+	1120.15 9	37.8 20	626.86	5/2+	D,E2		B(E1)(W.u.)=0.00015 7 Mult.: D,E2 from comparison to RUL. Δπ=yes from level scheme. E_{γ},I_{γ} : from ⁹⁵ Ru ε decay. E_{γ} : weighted average of 1120.11 <i>10</i> (⁹⁵ Ru ε decay), 1120.3						
		1410.60 <i>6</i>	100 6	336.413	7/2+	D,E2		2 (95 Mo(p,n),(p,n γ)). I _{γ} ,Mult.: from 95 Ru ε decay. E _{γ} : weighted average of 1410.63 <i>10</i> (95 Ru ε decay),						
		1747.00 21	1.6 4	0.0	9/2+	(E2)	0.000446 7	If 10.58 8 (12 M0(p,n),(p,n γ)). I _{γ} : from 95 Ru ε decay. α (K)=0.000229 4; α (L)=2.56×10 ⁻⁵ 4; α (M)=4.62×10 ⁻⁶ 7; α (N)=7.26×10 ⁻⁷ 11						
1785.31	$(7/2)^+$	572.4 [@] 4	18 8	1213.13	9/2	D		E_{γ},I_{γ} : from ⁹⁵ Ru ε decay.						
		1158.4 [#] 1 1448.9 2 1785 4 2	100 [#] 3 18.3 14 85 7	626.86 336.413	5/2 ⁺ 7/2 ⁺ 9/2 ⁺	D,E2 D,E2 D F2		E_{γ}, I_{γ} : from ⁹⁵ Ru ε decay. E_{γ}, I_{γ} : from ⁹⁵ Ru ε decay. E_{γ}, I_{γ} : from ⁹⁵ Ru ε decay.						
1837.65?	(7/2+,9/2+)	1703.42 $1501.3^{@} 3$ $1837.60^{@} 21$	100 <i>11</i> 82 <i>11</i>	336.413 0.0	7/2 ⁺ 9/2 ⁺	D,E2		E_{γ},I_{γ} : from (p,n γ). E_{γ},I_{γ} : from (p,n γ).						
1873.9? 1888.17	(7/2 ⁺ ,9/2 ⁺) (5/2 ⁻)	1873.9 [@] 10 960.1 2 1220.4 3 1261 36 10	100 67 6 30 6 100 6	0.0 927.81 667.82 626.86	9/2 ⁺ 3/2 ⁺ 5/2 ⁻ 5/2 ⁺			E_{γ}, I_{γ} : from (p,n γ). E_{γ}, I_{γ} : from (p,n γ). F. L : from (p, n γ).						
1920.04	(1/2 ⁻ ,3/2,5/2)	644.3 <i>I</i> 992.33 [@] 70 1252.17 6 1273 39 <i>I</i> 5	8.5 9 10.0 <i>13</i> 100.0 <i>21</i> 31 6	1275.92 927.81 667.82 646 55	$(3/2)^+$ $(3/2)^+$ $3/2^+$ $5/2^-$ $3/2^-$	D,E2 D,E2 D,E2 D E2		Ly,iy. nom (p,iy).						
1921.01	9/2	1584.59 10	100.0 18	336.413	$7/2^+$	D,E2								
1958.98	(5/2 ⁻)	1920.8 4 1622.58 10 1958.74 30	51 0 100 3 50 9	0.0 336.413 0.0	9/2 ⁺ 7/2 ⁺ 9/2 ⁺	D,E2 D(+Q)		δ : -0.07 12 or -4.0 +12-41 if 9/2 or \leq -0.4 if 7/2.						
1978.56	3/2+,5/2+,7/2+	358 [@] 1 893.75 22	14 4	1618.53 1084.97	(3/2 ⁺ ,5/2 ⁻) (5/2) ⁺	D,E2		E_{γ} : from (p,γ). E_{γ} : weighted average of 893.3 2 (⁹⁵ Ru ε decay), 893.86 10						

L.

						Adopte	d Levels, Gai	nmas (continue	ed)
							γ ⁽⁹⁵ Tc) (cc	ontinued)	
	E _i (level)	J^{π}_i	Eγ	I_{γ}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	α	Comments
	1978.56	3/2+,5/2+,7/2+	1050.74 <i>4</i>	100.0 14	927.81	3/2+	D,E2		$({}^{95}Mo(p,n),(p,n\gamma)).$ I _γ : weighted average of 6 3 (${}^{95}Ru \ \varepsilon \ decay$), 16.1 17 (${}^{95}Mo(p,n),(p,n\gamma)$). E _γ : weighted average of 1050.68 10 (${}^{95}Ru \ \varepsilon \ decay$), 1050.75 5 (${}^{95}Mo(p,n),(p,n\gamma)$). I _γ : weighted average of 100 4 (${}^{95}Ru \ \varepsilon \ decay$), 100.0 15
			1351.85 <i>14</i>	31.1 <i>14</i>	626.86	5/2+	D,E2		 (⁹⁵Mo(p,n),(p,nγ)). E_γ: weighted average of 1351.9 2 (⁹⁵Ru ε decay), 1351.8 2 (⁹⁵Mo(p,n),(p,nγ)). I_γ: weighted average of 32.7 23 (⁹⁵Ru ε decay), 30.2 18
			1642.00 <i>17</i>	3.86 24	336.413	7/2+	D,E2		 (⁹⁵Mo(p,n),(p,nγ)). E_γ: weighted average of 1642.0 2 (⁹⁵Ru ε decay), 1642.0 3 (⁹⁵Mo(p,n),(p,nγ)). I_γ: weighted average of 3.8 4 (⁹⁵Ru ε decay), 3.9 3 (⁹⁵Mo(p,n),(p,nγ)).
16	2032.34	5/2+,7/2,9/2 ⁽⁻⁾	1978.3 [@] 4 1364.3 [@] 1695.97 <i>13</i> 2031 8 4	0.53 <i>19</i> 100 12 17	0.0 667.82 336.413	9/2 ⁺ 5/2 ⁻ 7/2 ⁺ 9/2 ⁺	D,Q D,E2 D,E2 D F2		E_{γ}, I_{γ} : from ⁹⁵ Ru ε decay.
	2086.09	3/2+	446.4 [@] 3	3.8 19	1639.43	(3/2 ⁻)	[E1]	0.00208 <i>3</i>	$\alpha(K)=0.00183 \ 3; \ \alpha(L)=0.000207 \ 3; \ \alpha(M)=3.74\times10^{-5} \ 6; \\ \alpha(N)=5.93\times10^{-6} \ 9; \ \alpha(O)=3.91\times10^{-7} \ 6 \\ \alpha(N+)=6.32\times10^{-6} \ 9 \\ B(E1)(W.u.)=0.0017 \ +11-12 \\ E. \ L. \ 0.0017 \ +11-12 \\ E. \ 0.0017 $
			652.74 4	48.6 19	1433.25	5/2+	(M1)	0.00227 4	$a(K)=0.00200 3; a(L)=0.000227 4; a(M)=4.11\times10^{-5} 6;a(N)=6.55\times10^{-6} 10; a(O)=4.44\times10^{-7} 7a(N+)=6.99\times10^{-6} 10B(M1)(W.u.)=0.48 +17-23Mult: D in (p,nγ), (M1) assignment from level scheme.Eγ: weighted average of 652.81 10 (95Ru ε decay), 652.72 5(95Mo(p,n),(p,nγ)).Iγ: weighted average of 48.6 19 (95Ru ε decay), 49 4$
			1158.38 [#] 4	64 [#] 18	927.81	3/2+	(M1+E2)	0.000621 23	 (⁹³Mo(p,n),(p,nγ)). α(K)=0.000544 21; α(L)=6.13×10⁻⁵ 20; α(M)=1.11×10⁻⁵ 4; α(N)=1.77×10⁻⁶ 6 α(O)=1.19×10⁻⁷ 6; α(N+)=4.8×10⁻⁶ 3 Mult.: D, E2 in (p,nγ), (M1+E2) assignment from level scheme.

	Adopted Levels, Gammas (continued)													
						$\gamma(^{95}\text{Tc})$ (co	ontinued)							
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α	Comments					
									E _γ : weighted average of 1158.4 I (⁹⁵ Ru ε decay), 1158.38 4 (⁹⁵ Mo(p,n),(p,nγ)). I _γ : weighted average of 40 9 (⁹⁵ Ru ε decay), 78 7 (⁹⁵ Mo(p,n),(p,nγ)).					
2086.09	3/2+	1418.7 [@] 3	1.6 3	667.82	5/2-	[E1]		0.000368 <i>6</i>	$\alpha(K)=0.0001663\ 24;\ \alpha(L)=1.84\times10^{-5}\ 3;\alpha(M)=3.32\times10^{-6}\ 5;\ \alpha(N)=5.29\times10^{-7}\ 8\alpha(O)=3.60\times10^{-8}\ 5;\ \alpha(N+)=0.000180\ 3B(E1)(W.u.)=2.3\times10^{-5}\ +9-12E. L: Observed only in a decay$					
		1459.16 <i>10</i>	100.0 21	626.86	5/2+	(M1+E2)		0.000446 10						
		2047.00 14	16.6 8	38.91	1/2-	(E1)		0.000754 11						
2118.1? 2119.64 2164.1?	(7/2 ⁺ ,9/2 ⁺) 15/2 ⁽⁺⁾	2118.1 [@] 604.29 26 1237.44 <i>16</i> 1827.7 [@] <i>16</i> 2164.1 [@] 6	100 20.5 24 100 10 72 28 100 19	0.0 1515.25 882.23 336.413 0.0	9/2 ⁺ 17/2 ⁺ 13/2 ⁺ 7/2 ⁺ 9/2 ⁺	D,E2 D+Q	-0.08 +3-5		$E_{\gamma}, I_{\gamma}: \text{ from 95Mo}(p,n\gamma).$ $E_{\gamma}, I_{\gamma}: \text{ from 9^{3}Nb}(\alpha, 2n\gamma).$ $E_{\gamma}, I_{\gamma}: \text{ from 9^{3}Nb}(\alpha, 2n\gamma).$ $E_{\gamma}, I_{\gamma}: \text{ from 95Mo}(p,n\gamma).$ $E_{\gamma}, I_{\gamma}: \text{ from 95Mo}(p,n\gamma).$					
2168.27	7/2+	421.3 [@] 2 477.3 [@] 2 734.87 7	9.9 <i>14</i> 7.0 <i>14</i> 72 6	1747.02 1691.31 1433.25	(5/2) ⁺ 5/2 ⁺ ,7/2 ⁺ 5/2 ⁺	(M1)		0.001734 25	E _γ ,I _γ : Observed by ε decay only. E _γ ,I _γ : Observed by ε decay only. $\alpha(K)=0.001525\ 22;\ \alpha(L)=0.0001726\ 25;\ \alpha(M)=3.12\times10^{-5}\ 5$ $\alpha(O)=3.39\times10^{-7}\ 5;\ \alpha(N+)=5.32\times10^{-6}$ B(M1)(W.u.)=0.28 +6-7 E _γ : weighted average of 735.1 2 (⁹⁵ Ru ε					

L

$\gamma(^{95}\text{Tc})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α	Comments
2168.27	7/2+	989.76 5	100.0 22	1178.60	7/2+	[M1+E2]	0.00087 <i>3</i>	decay), 734.85 6 (95 Mo(p,n),(p,n γ)). I_{γ} : weighted average of 66 3 (95 Ru ε decay), 78 3 (95 Mo(p,n),(p,n γ)). α (K)=0.000766 25; α (L)=8.69×10 ⁻⁵ 21; α (M)=1.57×10 ⁻⁵ 4; α (N)=2.50×10 ⁻⁶ 7; α (O)=1.68×10 ⁻⁷ 7 α (N+)=2.67×10 ⁻⁶ 8
		1240.40 <i>14</i>	11.3 <i>13</i>	927.81	3/2+	(E2)	0.000530 8	E _γ : weighted average of 989.72 <i>10</i> (95 Ru ε decay), 989.77 <i>6</i> (95 Mo(p,n),(p,nγ)). I _γ : weighted average of 100 4 (95 Ru ε decay), 100.0 22 (95 Mo(p,n),(p,nγ)). α (K)=0.000453 7; α (L)=5.13×10 ⁻⁵ 8; α (M)=9.28×10 ⁻⁶ 13; α (N)=1.476×10 ⁻⁶ 21 α (O)=9.89×10 ⁻⁸ 14; α (N+)=1.554×10 ⁻⁵ 22 B(E2)(W.u.)=6.0 +13-15 E _γ : weighted average of 1240.4 2 (95 Ru ε decay), 1240.4 2 (95 Me(e, r)) (e, r))
		1522.0 <i>3</i> 1541.28 <i>9</i>	3.9 <i>10</i> 40.2 <i>18</i>	646.55 626.86	3/2 ⁻ 5/2 ⁺	[M1+E2]	0.000434 8	(²⁵ Mo(p,n),(p,n γ)). I _y : weighted average of 11 7 (⁹⁵ Ru ε decay), 11.3 13 (⁹⁵ Mo(p,n),(p,n γ)). Mult.: D,E2 from (p,n γ), adopting (E2) from level scheme. E _{γ} ,I _{γ} : Observed by ε decay only. α (K)=0.000302 11; α (L)=3.37×10 ⁻⁵ 11; α (M)=6.09×10 ⁻⁶ 20; α (N)=9.7×10 ⁻⁷ 4 α (O)=6.6×10 ⁻⁸ 3; α (N+)=9.3×10 ⁻⁵ 8 E : weighted average of 1541 3.2 (⁹⁵ Ru ε decay), 1541 27 10
		1831.80 <i>14</i>	34.1 <i>18</i>	336.413	7/2+	[M1+E2]	0.000457 9	$ \begin{array}{l} & (9^{5} \text{Mo}(\text{p},\text{n}),(\text{p},\text{n}\gamma)). \\ & \text{I}_{\gamma}: \text{ weighted average of 39 } 3 \ (^{95} \text{Ru} \ \varepsilon \ \text{decay}), \ 40.9 \ 22 \ (^{95} \text{Mo}(\text{p},\text{n}),(\text{p},\text{n}\gamma)). \\ & \alpha(\text{K}) = 0.000215 \ 7; \ \alpha(\text{L}) = 2.39 \times 10^{-5} \ 7; \ \alpha(\text{M}) = 4.32 \times 10^{-6} \ 13; \\ & \alpha(\text{N}) = 6.90 \times 10^{-7} \ 21 \\ & \alpha(\text{O}) = 4.72 \times 10^{-8} \ 16; \ \alpha(\text{N}+) = 0.000213 \ 13 \\ \text{E} : \text{ weighted average of 1831 } 9 \ 2 \ (^{95} \text{Pu c decay}), \ 1831 \ 7 \ 2 \end{array} $
		2168.18 22	5.8 8	0.0	9/2+	[M1+E2]	0.000548 15	$\begin{split} & \text{L}_{\gamma}. \text{ weighted average of 1851.9.2 (~ Ku ε decay), 1851.7.2 } \\ & (^{95}\text{Mo}(p,n),(p,n\gamma)). \\ & \text{I}_{\gamma}: \text{ weighted average of 34 } 3 \; (^{95}\text{Ru} \; \varepsilon \; \text{decay}), 34.1 \; 22 \; (^{95}\text{Mo}(p,n),(p,n\gamma)). \\ & \alpha(\text{K}) = 0.000157 \; 4; \; \alpha(\text{L}) = 1.74 \times 10^{-5} \; 4; \; \alpha(\text{M}) = 3.13 \times 10^{-6} \; 7; \\ & \alpha(\text{N}) = 5.00 \times 10^{-7} \; 12 \\ & \alpha(\text{O}) = 3.43 \times 10^{-8} \; 9; \; \alpha(\text{N}+) = 0.000371 \; 17 \\ & \text{E}_{\gamma}: \text{ weighted average of 2168.1 } 3 \; (^{95}\text{Ru} \; \varepsilon \; \text{decay}), \; 2168.27 \; 30 \\ & (^{95}\text{Mo}(p,n),(p,n\gamma)). \\ & \text{I}_{\gamma}: \text{ weighted average of 6.5 } 8 \; (^{95}\text{Ru} \; \varepsilon \; \text{decay}), \; 4.8 \; 11 \; (^{95}\text{Mo}(p,n),(p,n\gamma)). \end{split}$

18

						γ (95	Tc) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α	Comments
2183.86	19/2+	634.47 12	85 6	1549.46	15/2+	E2(+M3)	-0.01 16	0.0026 5	$\begin{aligned} &\alpha(\mathrm{K}) = 0.0022 \ 4; \ \alpha(\mathrm{L}) = 0.00027 \ 5; \ \alpha(\mathrm{M}) = 4.8 \times 10^{-5} \ 9; \\ &\alpha(\mathrm{N}) = 7.6 \times 10^{-6} \ 15; \ \alpha(\mathrm{O}) = 4.8 \times 10^{-7} \ 10 \\ &\alpha(\mathrm{N}+) = 8.1 \times 10^{-6} \ 16 \\ &\mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = (1.2 \times 10^2 \ +8 - 12) \\ &\mathrm{E}_{\gamma}: \ \text{weighted average of } 634.5 \ 1 \ (^{93}\mathrm{Nb}(\alpha, 2\mathrm{n}\gamma)), \ 634.0 \\ &4 \ (^{65}\mathrm{Cu}(^{36}\mathrm{S}, \alpha 2\mathrm{n}\gamma)). \end{aligned}$
		668.54 <i>12</i>	100 6	1515.25	17/2+	M1+E2	+0.28 +2-3	0.00216 3	$\begin{split} &I_{\gamma}: \text{from } {}^{93}\text{Nb}(\alpha,2n\gamma); \text{ other: } 100 \ 10 \ ({}^{65}\text{Cu}({}^{36}\text{S},\alpha2n\gamma)). \\ &\alpha(\text{K}) = 0.00190 \ 3; \ \alpha(\text{L}) = 0.000216 \ 3; \ \alpha(\text{M}) = 3.90 \times 10^{-5} \ 6; \\ &\alpha(\text{N}) = 6.22 \times 10^{-6} \ 9; \ \alpha(\text{O}) = 4.20 \times 10^{-7} \ 6 \\ &\alpha(\text{N}+) = 6.64 \times 10^{-6} \ 10 \\ \text{B}(\text{E2})(\text{W.u.}) = 8 \ + 6 - 8; \ \text{B}(\text{M1})(\text{W.u.}) = 0.05 \ + 3 - 5 \\ \text{E}_{\gamma}: \text{ weighted average of } 668.57 \ 9 \ ({}^{93}\text{Nb}(\alpha,2n\gamma)), \ 668.0 \\ &4 \ ({}^{65}\text{Cu}({}^{36}\text{S},\alpha2n\gamma)). \end{split}$
2189.10	5/2+,7/2+	755.83 7	32 3	1433.25	5/2+	D,E2			I _γ : from ⁹⁵ Nb(α ,2nγ); other: 57 5 (65 Cu(36 S, α 2nγ)). E _γ : weighted average of 755.86 10 (95 Ru ε decay), 755.8 1 (95 Mo(p,n),(p,nγ)). I _γ : weighted average of 30 3 (95 Ru ε decay), 37 5 (95 Mo(p,n),(p,nγ)). Mult : from (n pr)
		1010.49 6	100.0 24	1178.60	7/2+	D,E2			E _γ : weighted average of 1010.57 <i>10</i> (95 Ru ε decay), 1010.44 8 (95 Mo(p,n),(p,nγ)). I _γ : weighted average of 100 4 (95 Ru ε decay), 100 3 (95 Mo(p,n),(p,nγ)). Mult : from (p, nγ)
		$1104.3^{@}$ 2	29.9	1084.97	$(5/2)^+$	D.E2			E_{α} L _z Mult.: observed only in ε decay.
		$1261.2^{@}2$	46.3	927.81	$3/2^+$	D.E2			E_{α} I _w Mult: observed only in (p.ny).
		1562.33 14	18 5	626.86	5/2+	D,E2			E _γ : weighted average of 1562.3 2 (⁹⁵ Ru ε decay), 1562.35 20 (⁹⁵ Mo(p,n),(p,nγ)). I _γ : weighted average of 21.9 14 (⁹⁵ Ru ε decay), 12.4 17 (⁹⁵ Mo(p,n),(p,nγ)). Mult: from (p,nγ).
		1852.65 <i>15</i>	16.8 8	336.413	7/2+	D,E2			E _γ : weighted average of 1852.8 2 (95 Ru ε decay), 1852.5 2 (95 Mo(p,n),(p,nγ)). I _γ : weighted average of 16.4 14 (95 Ru ε decay), 17.0 9 (95 Mo(p,n),(p,nγ)). Mult : from (p, nγ).
		2189.02 18	5.5 6	0.0	9/2+	D,Q			E_{γ} : weighted average of 2189.3 3 (⁹⁵ Ru ε decay),

From ENSDF

⁹⁵₄₃Tc₅₂-19

Т

	Adopted Levels, Gammas (continued)													
						γ (⁹⁵ Tc)	(continued)							
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α	Comments					
									2188.9 2 (⁹⁵ Mo(p,n),(p,nγ)). I _γ : weighted average of 5.6 8 (⁹⁵ Ru ε decay), 5.4 9 (⁹⁵ Mo(p,n),(p,nγ)). Mult.: from (p,nγ).					
2203.59 2210.6?	(3/2+,5/2+)	564.09 25 1118.69 25 1874.3 4	81 6 100 4 100 4	1639.43 1084.97 336.413	$(3/2^{-})$ $(5/2)^{+}$ $7/2^{+}$									
2212.90	(17/2 ⁻)	510.9 3	23 5	0.0	9/2 13/2 ⁻	(E2)		0.00473 7	$\begin{aligned} &\alpha(\text{K}) = 0.00412 \ 6; \ \alpha(\text{L}) = 0.000500 \ 7; \\ &\alpha(\text{M}) = 9.07 \times 10^{-5} \ 13; \ \alpha(\text{N}) = 1.426 \times 10^{-5} \ 21; \\ &\alpha(\text{O}) = 8.79 \times 10^{-7} \ 13 \\ &\alpha(\text{N}+) = 1.514 \times 10^{-5} \ 22 \\ &\text{Mult.: from } \alpha(\text{K}) \text{exp in } (\alpha, 2n\gamma). \\ &\text{E}_{\gamma}: \text{ weighted average of } 510.8 \ 5 \ (^{93}\text{Nb}(\alpha, 2n\gamma)), \end{aligned}$					
		663.43 12	100 5	1549.46	15/2+	(E1(+M2))	+0.07 9	0.00085 11	511.0 4 (65 Cu(36 S, $\alpha 2n\gamma$)). I _{γ} : from (α ,2n γ); other: 38 4 ((36 S, $\alpha 2n\gamma$)). α (K)=0.00075 10; α (L)=8.4×10 ⁻⁵ 12; α (M)=1.52×10 ⁻⁵ 21; α (N)=2.4×10 ⁻⁶ 4; α (O)=1.61×10 ⁻⁷ 22 α (N+)=2.6×10 ⁻⁶ 4 E _{γ} : weighted average of 663 43 12					
		697.6 <i>4</i>	9.4 11	1515.25	17/2+	[E1]		0.000738 11	(93 Nb(α ,2n γ)), 663.5 4 (65 Cu(36 S, α 2n γ)). I $_{\gamma}$: from (α ,2n γ); other: 38 4 ((36 S, α 2n γ)). Mult.: from (α ,2n γ). α (K)=0.000649 10; α (L)=7.28×10 ⁻⁵ 11;					
									$\alpha(M)=1.313\times10^{-5}$ 19 $\alpha(O)=1.398\times10^{-7}$ 20; $\alpha(N+)=2.23\times10^{-6}$ E. L. observed only in (α 2ny)					
2219.63	(7/2 ⁺)	1291.4 <i>3</i> 1883.5 <i>3</i> 2219.9 5	100 8 27.7 22 9 3	927.81 336.413 0.0	3/2 ⁺ 7/2 ⁺ 9/2 ⁺									
2231.5	(17/2 ⁺)	682.1 <i>4</i> 716.2 <i>4</i>	12 <i>4</i> 100 <i>5</i>	1549.46 1515.25	15/2 ⁺ 17/2 ⁺	D,E2 (M1+(E2))	-0.06 +8-17	0.00184 3	$\alpha(K)=0.001616\ 23;\ \alpha(L)=0.000183\ 3;\alpha(M)=3.31\times10^{-5}\ 5;\ \alpha(N)=5.29\times10^{-6}\ 8;\alpha(O)=3.59\times10^{-7}\ 5\alpha(N+)=5\ 64\times10^{-6}\ 8$					
		1349.1 5	5.9 24	882.23	13/2+	(E2)		0.000470 7	B(E2)(W.u.)=4 +10-4; B(M1)(W.u.)=0.51 16 α (K)=0.000381 6; α (L)=4.29×10 ⁻⁵ 6; α (M)=7.76×10 ⁻⁶ 11; α (N)=1.236×10 ⁻⁶ 18					

 $^{95}_{43}\mathrm{Tc}_{52}$ -20

Т

					Adopted L	evels, Gan	amas (continued)
					γ	(⁹⁵ Tc) (coi	ntinued)
E _i (level)	J^{π}_i	Eγ	Iγ	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
							$\alpha(K)=0.000381 \ 6; \ \alpha(L)=4.29\times10^{-5} \ 6; \ \alpha(M)=7.76\times10^{-6} \ 11; \\ \alpha(N)=1.236\times10^{-6} \ 18 \\ \alpha(O)=8.31\times10^{-8} \ 12; \ \alpha(N+)=3.85\times10^{-5} \ 6 \\ B(F2)(Wu)=2.5 \ 13 $
2236.97	(≥5/2)	1610.1 2	100	626.86	5/2+		D(D2)(W,W) = 2.5 + 15
2240.6?		$1904.3^{@} 4$ 2240.4^{@} 5	100 <i>16</i> 100 <i>26</i>	336.413 0.0	7/2 ⁺ 9/2 ⁺		
2251.96	(7/2)+	560.0 [@] 5 1324.0 3 1625.1 3 2252.1 2	14 9 4.7 24 27.0 3 100 5	1691.31 927.81 626.86 0.0	5/2 ⁺ ,7/2 ⁺ 3/2 ⁺ 5/2 ⁺ 9/2 ⁺		E_{γ}, I_{γ} : Observed only in ε decay. E_{γ}, I_{γ} : from $(p, n\gamma)$. E_{γ}, I_{γ} : from $(p, n\gamma)$. E_{γ}, I_{γ} : from $(p, n\gamma)$.
2267.59	(7/2)+	576.1 [@] 6 834.4 [@] 3 1088.9 2 1182.65 21	14 <i>11</i> 24 <i>4</i> 76 <i>17</i> 76 <i>10</i>	1691.31 1433.25 1178.60 1084.97	$5/2^+,7/2^+$ $5/2^+$ $7/2^+$ $(5/2)^+$		E_{γ}, I_{γ} : observed only in ε decay. E_{γ}, I_{γ} : observed only in ε decay. E_{γ}, I_{γ} : from ε decay. E_{γ}, I_{γ} : from ε decay. E_{γ} : weighted average of 1182.8 3 (⁹⁵ Ru ε decay), 1182.5 3 (⁹⁵ Mo(p,n), (p,nγ)).
		1339.78 <i>20</i>	86 7	927.81 336.413	3/2 ⁺		I _{γ} : from ε decay. E _{γ} : weighted average of 1339.62 <i>10</i> (⁹⁵ Ru ε decay), 1340.02 <i>12</i> (⁹⁵ Mo(p,n),(p,n γ)). I _{γ} : from ε decay. E _{τ} I _{ϵ} : from ε decay.
		2267.60 14	31 3	0.0	$9/2^+$		E_{γ}, I_{γ} : from ε decay.
2318.3?	$(5/2^+ \text{ to } 11/2^+)$	1982.1 [@] 4	100 15	336.413	7/2+		E_{γ}, I_{γ} : from (p,n γ).
		2317.5 [@] 8	15 5	0.0	$9/2^{+}$		E_{γ}, I_{γ} : from (p,n γ).
2324.48	5/2+,7/2+	891 [@] 1 1697.45 <i>15</i>	13 7 8.87 <i>16</i>	1433.25 626.86	5/2 ⁺ 5/2 ⁺		E_{γ}, I_{γ} : observed only in ε decay. E_{γ} : weighted average of 1697.6 2 (⁹⁵ Ru ε decay), 1697.3 2 (⁹⁵ Mo(p,n), (p,n γ)). I_{α} : from (p, n γ)
		1988.12 <i>18</i>	49.6 <i>19</i>	336.413	7/2+		E_{γ} : weighted average of 1988.1 2 (⁹⁵ Ru ε decay), 1988.2 4 (⁹⁵ Mo(p,n),(p,n γ)).
		2324.55 14	100 3	0.0	9/2+		E_{γ} : weighted average of 2324.5 2 (⁹⁵ Ru ε decay), 2324.6 2 (⁹⁵ Mo(p,n),(p,nγ)). I_{γ} : from (p,nγ).
2328.72	(3/2)+	580.8 [@] 8 689.3 3 1243.6 3 1400.8 3	61 <i>61</i> 81 <i>10</i> 40 <i>30</i> 30 <i>6</i>	1747.02 1639.43 1084.97 927.81	(5/2) ⁺ (3/2 ⁻) (5/2) ⁺ 3/2 ⁺		

					Adopted	l Levels, Gai	<mark>mmas</mark> (continued	1)	
						γ (⁹⁵ Tc) (co	ontinued)		
E_i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	E_f	J_f^{π}	Mult. [†]	δ^{\ddagger}	α	Comments
2328.72	$(3/2)^+$	1702.0 [@] 3 2290.0 3	100 <i>15</i> 24 <i>4</i>	626.86 38.91	5/2 ⁺ 1/2 ⁻				
2382.3	(5/2 ⁺ ,7/2 ⁺)	403.8 [@] 4 1295.8 [@] 9 1756.1 10 2382.5 4	100 25 50 25 50 25 36 7	1978.56 1084.97 626.86 0.0	3/2 ⁺ ,5/2 ⁺ ,7/2 ⁺ (5/2) ⁺ 5/2 ⁺ 9/2 ⁺				
2409.54	(5/2+,7/2)	662.2 [@] 3 975.9 [@] 3 2410.2 3	70 <i>12</i> 100 <i>17</i> 17 <i>4</i>	1747.02 1433.25 0.0	$(5/2)^+$ $5/2^+$ $9/2^+$				
2474.7 2546.96	21/2+	959.4 <i>4</i> 363.28 <i>13</i>	100 100 <i>4</i>	1515.25 2183.86	17/2 ⁺ 19/2 ⁺	(M1)		0.00922 <i>13</i>	$\alpha(K)=0.00808 \ 12; \ \alpha(L)=0.000933 \ 13;$ $\alpha(M)=0.0001692 \ 24; \ \alpha(N)=2.69\times10^{-5} \ 4$ $\alpha(O)=1.81\times10^{-6} \ 3; \ \alpha(N+)=2.88\times10^{-5} \ B(M1)(W.u.)=0.14 \ +5-10 \ E_{\gamma}: weighted average of 363.26 \ 7 \ (^{93}Nb(\alpha,2n\gamma)), \ 364.0 \ 4 \ (^{65}Cu(^{36}S,\alpha 2n\gamma)).$ Mult. $I_{\gamma}: \text{ from } (\alpha,2n\gamma).$
		1031.78 9	57 3	1515.25	17/2+	E2		0.000770 11	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000677 \ 10; \ \alpha(\mathbf{L}) = 7.73 \times 10^{-5} \ 11; \\ &\alpha(\mathbf{M}) = 1.399 \times 10^{-5} \ 20 \\ &\alpha(\mathbf{O}) = 1.474 \times 10^{-7} \ 21; \ \alpha(\mathbf{N}+) = 2.42 \times 10^{-6} \ 25 \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 3.2 + 11 - 22 \\ &\mathbf{E}_{\gamma}: \text{ weighted average of } 1031.77 \ 9 \\ & \binom{9^3 \mathrm{Nb}(\alpha, 2n\gamma)}{(6^5 \mathrm{Cu}(^{36}\mathrm{S}, \alpha 2n\gamma))}. \\ &\mathrm{Mult., I_{\gamma}: \ from } (\alpha, 2n\gamma). \end{aligned}$
2556.0? 2706.5	$(\geq 5/2)$ (15/2)	2556 [@] 1004.4.5	100 100	0.0 1702.11	9/2+ 13/2 ⁻	D+O			
2844.0 2846.8	$(23/2^+)$	660.1 <i>4</i> 633.9 <i>3</i>	40 <i>4</i> 100	2183.86 2212.90	$19/2^+$ (17/2 ⁻)				
2906.46	(23/2+)	359.6 1	65 8	2546.96	21/2+	(M1+E2)	+0.25 +28-3	0.0097 8	$\alpha(K)=0.0085 7; \alpha(L)=0.00099 10;$ $\alpha(M)=0.000180 18; \alpha(N)=2.9\times10^{-5} 3;$ $\alpha(O)=1.90\times10^{-6} 12$ $\alpha(N+)=3.0\times10^{-5} 3$ B(E2)(W.u.)=(3.E+2+7-3); B(M1)\downarrow=0.63 20; B(M1)(W.u.)=(0.62 20) Mult. δ : D+Q, +0.46 + ∞ -24 from $\gamma(\theta)$ in (α ,2n γ). $\Delta\pi$ =no from level scheme; δ <0.25 28 from comparison to RUL.
		722.5 1	100 12	2183.86	19/2+	(E2)		0.00182 3	$\alpha(K)=0.001593\ 23;\ \alpha(L)=0.000187\ 3;$

From ENSDF

I.

	Adopted Levels, Gammas (continued)													
						γ (⁹⁵ T	Cc) (continued)							
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α	Comments					
			100		(15/2-)				$\alpha(M)=3.38\times10^{-5} 5; \ \alpha(N)=5.35\times10^{-6} 8; \alpha(O)=3.44\times10^{-7} 5 \alpha(N+)=5.69\times10^{-6} 8 B(E2)(W.u.)=2.4\times10^{2} 7 (K)=0.000144 0 (K)=0.0000144 0 (K)=0.0000144 0 (K)=0.0000144 0 (K)=0.0000144 0 (K)=0.0000144 0 (K)=0.0000144 0 \\(K)=0.0000144 0 \\(K)=0.0000144 0 \\(K)=0.00000000000000000000000000$					
3024.07	(21/2 ⁻)	811.17 15	100	2212.90	(17/2 ⁻)	E2(+M3)	-0.09 10	0.00141 19	$\alpha(K)=0.00124 \ 17; \ \alpha(L)=0.000144 \ 21; \ \alpha(M)=2.6\times10^{-3} 4; \ \alpha(N)=4.1\times10^{-6} \ 6; \ \alpha(O)=2.7\times10^{-7} \ 4 \alpha(N+)=4.4\times10^{-6} \ 7 E_{\gamma}: weighted average of 811.14 \ 7 \ (^{93}Nb(\alpha,2n\gamma)), 812.0 \ 4 \ (^{65}Cu(^{36}S,\alpha2n\gamma)). Mult.,\delta: from \ (\alpha,2n\gamma).$					
3039.27	19/2	492.40 <i>9</i> 1523.9 <i>1</i>	64 7 100 9	2546.96 1515.25	21/2 ⁺ 17/2 ⁺	D D+Q	+0.18 +4-5							
3065.31	(17/2,19/2 ⁺)	1515.5 [@] 3 1550.2 2	35 <i>14</i> 100 <i>25</i>	1549.46 1515.25	15/2 ⁺ 17/2 ⁺	D,E2			Mult., δ : D+Q, -0.04 <i>10</i> if J _i =17/2; D+Q, +0.63 +5-10 if J _i =19/2; E2 if J _i =21/2 ⁺ from $\gamma(\theta)$ in (α ,2n γ) and comparison to RUL.					
3210.3	(21/2)+	1695.0 <i>4</i>	100	1515.25	17/2+	E2		0.000439 7	$\alpha(K) = 0.000243 4; \ \alpha(L) = 2.71 \times 10^{-5} 4; \alpha(M) = 4.90 \times 10^{-6} 7; \ \alpha(N) = 7.81 \times 10^{-7} 11 \alpha(O) = 5.30 \times 10^{-8} 8; \ \alpha(N+) = 0.0001642 23 B(E2)(W.u.) = 4.1 + 8-7 Mult : from \gamma(\theta) in (\alpha, 2n\gamma) and comparison to BUL.$					
3516.0	25/2+	969.0 <i>3</i>	100	2546.96	21/2+	E2(+M3)	-0.03 8	0.00089 5	$\alpha(K)=0.00078 \ 4; \ \alpha(L)=9.0\times10^{-5} \ 5; \ \alpha(M)=1.63\times10^{-5} \ 9; \ \alpha(N)=2.58\times10^{-6} \ 14; \ \alpha(O)=1.71\times10^{-7} \ 10 \ \alpha(N+)=2.75\times10^{-6} \ 15 \ B(E2)(W.u.)<5.2 \ E_{\gamma}: weighted average of 968.90 \ 10 \ (^{93}Nb(\alpha,2n\gamma)), \ 970.1 \ 4 \ (^{65}Cu(^{36}S,\alpha2n\gamma)). \ Mult.\delta: from \ (\alpha,2n\gamma).$					
3578.5 3821.86	(23/2) $(25/2^{-})$	554.4 7 707 78 0	100	3024.07	$(21/2^{-})$ $(21/2^{-})$	D(+Q) E2(+M3)	_0.11.77	0.0015.3	$\alpha(K) = 0.00132.22$; $\alpha(L) = 0.00015.3$; $\alpha(M) = 2.8 \times 10^{-5}.5$;					
5621.00		171.10 7	100	5024.07	(21/2)		0.11 11	0.0013 5	$\alpha(N)=4.4\times10^{-6} \ 8; \ \alpha(O)=2.9\times10^{-7} \ 6$ $\alpha(N+)=4.7\times10^{-6} \ 9$ $E_{\gamma}: \text{ weighted average of } 797.76 \ 9 \ (^{93}\text{Nb}(\alpha,2n\gamma)),$ $798.1 \ 4 \ (^{65}\text{Cu}(^{36}\text{S},\alpha2n\gamma)).$ Mult δ : from $(\alpha, 2n\gamma)$					
3918.3	29/2+	402.33 13	100	3516.0	25/2+	E2(+M3)	-0.07 7	0.0102 12	$\alpha(K)=0.0088 \ 10; \ \alpha(L)=0.00111 \ 14; \ \alpha(M)=0.00020 \ 3; \\ \alpha(N)=3.2\times10^{-5} \ 4; \ \alpha(O)=1.87\times10^{-6} \ 25 \\ \alpha(N+)=3.3\times10^{-5} \ 5 \\ E_{\gamma}: \text{ weighted average of } 402.31 \ 7 \ (^{93}Nb(\alpha,2n\gamma)),$					

⁹⁵₄₃Tc₅₂-23

I.

					Adopted	d Levels, G	ammas (co	ntinued)	
						γ ⁽⁹⁵ Tc) (continued)		
E _i (level)	J^{π}_{i}	Eγ	I_{γ}	E_f	${ m J}_f^\pi$	Mult. [†]	δ^{\ddagger}	α	Comments
4081.6	23/2 ⁻ ,25/2 ⁻ ,27/2 ⁻	565.6 9	100	3516.0	25/2+	E1+M2	0.34 <i>13</i>	0.0021 7	403.1 4 (65 Cu(36 S, $\alpha 2n\gamma$)). Mult., δ : from (α ,2n γ); consistent with α (K)exp. α (K)=0.0018 6; α (L)=0.00021 7; α (M)=3.8×10 ⁻⁵ 13; α (N)=6.1×10 ⁻⁶ 21; α (O)=4.0×10 ⁻⁷ 14 α (N+)=6.5×10 ⁻⁶ 22 Mult δ : from α (K)exp in (α 2n γ)
4110.4		192.1 4	100	3918.3	29/2+				
4127.4	$(29/2)^{-}$	305.61 24	100	3821.86	$(25/2^{-})$				E _{γ} : weighted average of 305.57 7 (α ,2n γ) and 307.0 4
4293.0	27/2+	374.7 1	45 5	3918.3	29/2+	M1		0.00854 12	$\alpha(K) = 0.00749 \ 11; \ \alpha(L) = 0.000864 \ 13; \ \alpha(M) = 0.0001566$ 22; $\alpha(N) = 2.49 \times 10^{-5} \ 4$ $\alpha(Q) = 1.675 \times 10^{-6} \ 24; \ \alpha(N_{+-}) = 2.66 \times 10^{-5}$
		776 1	100 5	3516.0	$25/2^+$				$u(0) = 1.075 \times 10^{-2.4}, u(1) = 2.00 \times 10^{-1.075}$
4783.7		656.3 6	100	4127.4	(29/2)-				E_{γ} : weighted average of 655.8 <i>3</i> ((<i>α</i> ,2nγ)) and 657.1 <i>4</i> (³⁶ S, <i>α</i> 2nγ).
4971.35	(29/2 ⁻)	844.0 [@] 3	28 6	4127.4	(29/2)-	D(+Q)			$ δ: -0.8 29 \text{ if } J_f = 29/2^- \text{ or } +0.14 22 \text{ if } J_f = 27/2^- \text{ in } (α, 2n\gamma). $ E_{γ}, I_{γ} : Observed only in $(α, 2n\gamma)$.
		1149.48 <i>10</i>	100 6	3821.86	(25/2 ⁻)	(E2)			E _γ : weighted average of 1149.5 <i>I</i> (⁹³ Nb(α ,2n γ)), 1149.1 <i>4</i> (⁶⁵ Cu(³⁶ S, α 2n γ)). I _γ : from (α ,2n γ). δ: from ⁶⁵ Cu(³⁶ S, α 2n γ).
5366.8		583.1 4	100	4783.7					
5599.3	$(31/2^+)$ (20/2 ⁺)	1681 <i>1</i>	100	3918.3	$29/2^{+}$				
5729.3	$(29/2^{-})$ $(31/2^{+})$	1811 7	100	3918.3	$29/2^{+}$	(M1)			δ : from DCO ratio in 65 Cu(36 S, $\alpha 2n\gamma$).
5831.6	(33/2 ⁻)	860.2 4	100	4971.35	$(29/2^{-})$	(E2)			
5905.4	$(33/2^+)$	176.1 4	100	5729.3	$(31/2^+)$				
6356.7		293.0 4 525.1 4	100	5831.6	$(33/2^{-})$				
6501.0		1134.2 4	100	5366.8	(00/=)				
6619.5	$(35/2^+)$	714.1 4	100	5905.4	$(33/2^+)$				65 - 36
6668.5 7317.7	$(33/2^{+})$ $(35/2^{-})$	1069.2 4	100	5599.3 5831.6	$(31/2^{+})$ $(33/2^{-})$	(M1)			δ : from DCO ratio in ${}^{65}Cu({}^{50}S,\alpha 2n\gamma)$.
7920.6	$(35/2^{-})$	2089 1	100	5831.6	$(33/2^{-})$	(M1)			δ : from DCO ratio in 65 Cu(36 S. $\alpha 2n\gamma$).
8298.6	(35/2 ⁻)	2467 1	100	5831.6	$(33/2^{-})$	()			
8539.7	$(37/2^{-})$	619.1 4	100	7920.6	$(35/2^{-})$				5
8971.5 9148-7	$(33/2^{+})$ $(35/2^{+})$	2303 I 177 2 4	100	6668.5 8971-5	$(33/2^{+})$ $(33/2^{+})$				δ : from DCO ratio in 65 Cu(65 S, $\alpha 2n\gamma$).
9259.8	$(41/2^{-})$	720.1 4	100	8539.7	$(37/2^{-})$				
10148.8	$(37/2^+)$	1000.1 4	100	9148.7	$(35/2^+)$				

 $^{95}_{43}\mathrm{Te}_{52}$ -24

⁹⁵₄₃Tc₅₂-24

From ENSDF

$\gamma(^{95}\text{Tc})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	${ m J}_f^\pi$
10659.9 12078.9	(45/2 ⁻) (47/2 ⁻)	1400.1 <i>4</i> 1419.0 <i>4</i>	100 100	9259.8 10659.9	(41/2 ⁻) (45/2 ⁻)
14460.9		2382 1	100	12078.9	$(47/2^{-})$

 † From comparison to RUL, except as noted.

[‡] From γ(θ) in (α,2nγ), except as noted.
[#] Multiply placed with intensity suitably divided.
[@] Placement of transition in the level scheme is uncertain.

Legend

 γ Decay (Uncertain)

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{95}_{43}{
m Tc}_{52}$

 $^{95}_{43}\mathrm{Tc}_{52}$ -27

 $^{95}_{43}{
m Te}_{52}$

Legend

Level Scheme (continued)

⁹⁵₄₃Tc₅₂

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Legend

⁹⁵₄₃Tc₅₂

⁹⁵₄₃Tc₅₂

 $^{95}_{43}{\rm Tc}_{52}$