⁹⁵Rh ε decay (1.96 min) 1981Gr20,1979Zy03,1975We03

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. K. Basu, G. Mukherjee, A. A. Sonzogni	NDS 111, 2555 (2010)	30-Jun-2009

Parent: ⁹⁵Rh: E=543.3 3; $J^{\pi}=(1/2)^{-}$; $T_{1/2}=1.96 \text{ min } 4$; $Q(\varepsilon)=5112 \ 12$; $\mathscr{H}_{\varepsilon}+\mathscr{H}_{\beta}^{+}$ decay=12 5 ⁹⁵Rh- $\mathscr{H}_{\varepsilon}+\mathscr{H}_{\beta}^{+}$ decay: $\mathscr{H}_{\varepsilon}+\mathscr{H}_{\beta}^{+}=12 \ 5$ was determined by comparing $I\gamma(^{95}Rh \ 543\gamma)$ to intensities of γ 's following ε decay assuming mult(⁹⁵Rh \ 543\gamma)=M4 (1975We03). Other: 15 from $\mathscr{H}_{\gamma}(^{95}Rh \ 543\gamma)=77 \ (1981Gr20)$ and $\alpha(^{95}Rh \ 543\gamma)=0.102$. 1975We03: Measured γ 's, β^+ 's, $\gamma\gamma$ -coin, $\beta\gamma$ -coin, γ (t); Ge(Li), scin. 1981Gr20 and 1979Zy03 measured γ 's; Ge(Li).

⁹⁵Ru Levels

E(level)	J^{π}	$T_{1/2}^{\dagger}$
0.0	5/2+	1.643 h <i>13</i>
787.7 4	$1/2^{+}$	
3186.3 8	$(3/2)^{-}$	
3407.2 5	$(3/2)^{-}$	
3824.5? 7	$(3/2)^{-}$	

[†] From the Adopted Levels.

ε, β^+ radiations

See 1981Gr20 for the deduced β -strength functions.

E(decay)	E(level)	$I\beta^+$	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(1831 [‡] 12)	3824.5?	1.14 6	9.56 19	4.75 19	10.7 2	av E β =359.2 53; ε K=0.775 5; ε L=0.0959 6; ε M+=0.02259 13
(2248 12)	3407.2	5.5 4	11.3 9	4.86 19	16.8 <i>13</i>	av Eβ=543.0 54; εK=0.583 7; εL=0.0719 8; εM+=0.01693 18
(2469 12)	3186.3	3.4 6	4.0 7	5.39 20	7.4 13	av E β =641.7 54; ε K=0.473 6; ε L=0.0582 8; ε M+=0.01369 17
(4868 12)	787.7	61 5	3.6 3	6.03 19	65 5	av E β =1757.7 58; ε K=0.0486 5; ε L=0.00593 6; ε M+=0.001395 13

[†] For absolute intensity per 100 decays, multiply by 0.12 5.

[‡] Existence of this branch is questionable.

 $\gamma(^{95}\text{Ru})$

I_{γ} normalization: From ΣI_{γ} (to g.s.)=100. ΔJ^{π} =(2),yes.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
787.7 4	9.7 [‡] 7	787.7	1/2+	0.0 5/2+	E_{γ} : other: 783 (1981Gr20).
^x 2821.0	1.0 1				
3186.2 8	1.1 2	3186.3	$(3/2)^{-}$	$0.0 \ 5/2^+$	
3407.1 5	2.5 2	3407.2	$(3/2)^{-}$	$0.0 \ 5/2^+$	
x3757.4 20	1.0 2				
3824.4 [@] 7	1.6 3	3824.5?	$(3/2)^{-}$	0.0 5/2+	

Continued on next page (footnotes at end of table)

 $^{95}\mathbf{Rh}\ \varepsilon$ decay (1.96 min) 1981Gr20,1979Zy03,1975We03 (continued)

γ (⁹⁵Ru) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)
x4207.8 20	0.71 15	

^{*x*}4242.0 20 0.84 15

x4336.5 20 1.2 2

[†] From 1975We03, except as noted. I γ relative to I γ (⁹⁵Rh 543 γ)=100. [‡] %I γ (783 γ)=3.8 and %I γ (2821 γ)=3.4 (1981Gr20) are discrepant with %I γ (787 γ)=8.1 35 and %I γ (2821 γ)=0.8 4 derived from the present normalization and the $I\gamma$'s of 1975We03.

[#] For absolute intensity per 100 decays, multiply by 0.8 3.

[@] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

⁹⁵Rh ε decay (1.96 min) 1981Gr20,1979Zy03,1975We03

3