Adopted Levels, Gammas

				History						
	Туре		Author		Citation	Literature Cutoff Date				
	Full Evaluation	S. K. Basu, G. N	Iukherjee, A	A. A. Sonzogni	NDS 111,2555 (2010)	30-Jun-2009				
$Q(\beta^{-}) = -8376$ Note: Current of $S(2n) = 254746$ α : Additional i	5; S(n)=13504 6; S evaluation has used 5, S(2p)=9315 6 (20 nformation 1.	6(p)=3046 5; Q(a) I the following Q 009AuZZ).)=-4779 5 record -83'	2012Wa38 78 6 <i>13506</i> 6	6 3052 6 -4781 5 20	09AuZZ.				
				⁹⁵ Rh Levels						
			Cross	Reference (XRE	EF) Flags					
		A 9^{5} Rh IT o B 9^{5} Pd ε do C 9^{6} Ag ε p	decay (1.96 ecay (13.3 s decay:6.9 s	min) D 96 5) E 58 F 95	⁹⁶ Ag εp decay:4.40 s ⁵⁸ Ni(⁴⁰ Ca,3pγ), ⁶⁴ Zn(³⁶ Ar,pαγ) ⁹⁵ Rh IT decay (18.8 ns)					
E(level) [†]	J#‡	$T_{1/2}^{\#}$	XREF		Commer	nts				
0.0 [@]	9/2+	5.02 min 10	ABCDEF	$\%\varepsilon + \%\beta^+ = 100$ J ^{π} : from log ft=5 N=50 nuclei	=5.3 to $7/2^{(+)}$, no direct fe 8 to $9/2^+$, supported by co and Shell model calculation	beding to $5/2^+$ ground state comparison with the neighboring ons.				
543.3 3	(1/2) ⁻	1.96 min 4	A C	T _{1/2} : from $\gamma_{942}(t)$ of 95 Ru (1975We03). %IT=88 5 (1975We03); $\%\varepsilon + \%\beta^+ = 12$ 5 J ^{π} : 1/2 ⁻ ,3/2 ⁻ from log <i>ft</i> =6.0 +6-4 to 1/2 ⁺ and log <i>ft</i> =4.8 +4-3 to (3/2 ⁻). 1/2 from shell model. $\%\varepsilon + \%\beta^+$,%IT: from comparison of I γ (543 γ) with intensities of γ 's following ε decay of 543 state assuming mult(543 γ)=M4. Other: (#IT 95 from (1 + (542 γ)) 77 (1091C = 20) and (542 γ) 0.102						
680 <i>5</i>	(7/2 ⁺)		С	J ^π : by compari from the non reaction and model predic	son of neighboring 93 Tc (1) n observation of this non-y in the β^+ decay of the (21) ets 7/2 ⁺ at 650 keV (2003)	N=50) level scheme. Also, rast state in fusion evaporation $\frac{1}{2^+}$ isomer in ⁹⁵ Pd Shell Ba39).				
1180? 10	(5/2 ⁺)		C	J^{π} : tentative as (2003Ba39).	signment made in compari	ison to levels in ⁹³ Tc				
1350.97 [@] 1 1430? 20	$\begin{array}{c} 6 & (13/2^+) \\ & (11/2^+) \end{array}$		B DEF D	J^{π} : tentative as (2003Ba39).	signment made in compari	ison to levels in ⁹³ Tc				
1570? 10	$(5/2^-, 3/2^+)$		С	J^{π} : tentative as (2003Ba39).	signment made in compari	ison to levels in ⁹³ Tc				
2067.53 [@] 2 2080 <i>10</i>	$\begin{array}{ccc} 21 & (17/2^+) \\ & (15/2^+, 17/2^+) \end{array}$		B EF D	J ^π : from 2003E (8 ⁺) state in E(level): accord 2067 keV lev	Ba39, possible L=0 proton ⁹⁶ Ag. ding to 2003Ba39, this lev vel, though the assignment	emission to this state from the el could be identical to the i is not unique.				
2236.37 ^{&} 2	2 (17/2 ⁻)	18.8 ns 10	B EF	g=1.29 4 (1983) $T_{1/2}$: weighted pulsed beam	Gr33) av of 15 ns 5 (RDDS 198 1983Gr33).	30No06) and 19 ns <i>I</i> (using				
2264.10 [@] 1 2449.13 [@] 2 2973.13 23	$\begin{array}{l} 9 & (17/2^{+}) \\ 0 & (21/2^{+}) \\ & (21/2^{+}, 23/2^{+}) \end{array}$	2.54 ns 22	B E B E B	$T_{1/2}$: weighted J^{π} : Tentative spectrum scheme.	av of 2.1 ns 3 (1980No06 bin assignments from 1982	b) and 2.65 ns <i>15</i> (1998Ju05). Ku15 based on the decay				
3095.9 <i>3</i> 3129.43 <i>23</i>			B B							

Continued on next page (footnotes at end of table)

95Rh Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
3241.3 ^{&} 3	(21/2 ⁻)	4.6 ps 2	ΒE	$T_{1/2}$: Other 26 ps 4 (RDDS 1980No06). Probably not corrected for side feeding.
3723.7 [@] 3 3837.3 3	$(25/2^+)$	<1.4 ps	E B	
3908.8 ^{&} 3	(25/2 ⁻)	24.9 ps 12	E	 g=0.90 28 T_{1/2}: from 1998Ju05; Other: 31 ps 6 (RDDS 1980No06). Probably not corrected for side feeding. g: weighted average of two measurements, done with Fe- (1.28 19) and Ni-hosts (0.69 14) (1999Ju04).
4135.2 <i>5</i> 4163.4 <i>5</i>			B B	
4241.9 ^a 3	$(21/2^+)$		Е	
5458.3 ^a 3	$(25/2^+)$	<1.4 ps	E	
6119.7 [@] 3	$(27/2^+)$		E	
6212.2 ^{<i>a</i>} 3	(29/2 ⁺)	6.6 ps <i>6</i>	E	 g=0.64 31 g: Weighted average of two measurements, done with Fe- (0.80 30) and Ni-hosts (0.04 59) (1999Ju04).
6405.3 <i>3</i>	$(27/2^{-})$	<0.7 ps	E	
6585.4 <mark>6</mark> 3	$(27/2^{-})$	<0.7 ps	E	
6699.2 3	$(29/2^{-})$	0.85 ps 5	E	
6795.1 ^{<i>a</i>} 3	$(31/2^+)$	<0.7 ps	E	
$7064.9?^{\circ}$ 3	$(29/2^{-})$		E	
$7139.5^{\circ}3$	(33/2)		E	
7512.0° 3 7625 1 ^{<i>a</i>} 3	(31/2) $(35/2^+)$	14.8 ps 26	E	g = 0.41.14
1025.1 5	(33/2)	11.0 p3 20	-	g: Weighted average of two measurements, done with Fe- and Ni-hosts (1999Ju04).
7846.2 ^b 3	$(33/2^{-})$	1.77 ps 15	E	
8395.0 ^b 3	$(35/2^{-})$	1.86 ps 9	E	
8656.0 <mark>b</mark> 3	$(37/2^{-})$	1.16 ps 22	E	
8875.3 ^a 4	$(39/2^+)$	<2.0 ps	E	
9346.6 ^b 4	(39/2 ⁻)	<1.0 ps	E	
10653.3 ^b 4	$(41/2^{-})$		E	
11368.0 4	(41/0+)		E	
11967.174 4	$(41/2^+)$ $(41/2^+)$		E	
12113.94	(+1/2)		E	
12434.6 4	$(43/2^+)$		Ē	
12869.1 4	$(41/2^-, 43/2^-)$		E	
13876.4 5	$(45/2^+, 47/2^+)$		E	

[†] From least-squares fit to $E\gamma's$ for levels connected by transitions with known ΔE_{γ} . [‡] From $\gamma(\theta)$ in (⁴⁰Ca,3p γ) and multipolarities of deexciting $\gamma's$, except as noted. [#] From recoil-distance measurements in 1998Ju05 (⁴⁰Ca,3p γ), except as noted.

[@] Band(A): +ve parity yrast band.

& Band(B): -ve parity yrast band.

^{*a*} Band(C): +ve parity side band.

^b Band(D): -ve parity side band.

$\gamma(^{95}\text{Rh})$

See ⁹⁵Pd ε decay for unplaced γ 's.

ω

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α	Comments
543.3	(1/2)-	543.3 3	100	0.0	9/2+	[M4]	0.1001	$\alpha(K)=0.0842 \ 12; \ \alpha(L)=0.01296 \ 19; \ \alpha(M)=0.00247 \ 4; \ \alpha(N)=0.000404 \ 6; \ \alpha(O)=1.79\times10^{-5} \ 3 \ \alpha(N+)=0.000422 \ 6 \ B(M4)(W.u.)=38.7 \ 24 \ E_{\gamma}: \ from \ ^{95}Rh \ IT \ decay \ (1.96 \ min).$
680	$(7/2^+)$	680 [@] 5	100	0.0	9/2+			
1180?	$(5/2^+)$	1180 ^{@a} 10	100	0.0	9/2+			
1350.97	(13/2+)	1350.96 16	100	0.0	9/2+	(E2)	0.000531 8	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000434 \ 6; \ \alpha(\mathbf{L}) = 4.98 \times 10^{-5} \ 7; \ \alpha(\mathbf{M}) = 9.22 \times 10^{-6} \ 13; \\ &\alpha(\mathbf{N}) = 1.530 \times 10^{-6} \ 22 \\ &\alpha(\mathbf{O}) = 7.80 \times 10^{-8} \ 11; \ \alpha(\mathbf{N}+) = 3.84 \times 10^{-5} \ 6 \\ &\text{Mult.: Q from } \gamma(\theta); \text{ assumed E2 by 1980No06.} \\ &\mathbf{E}_{\gamma}: \text{ weighted average of 1351.06 } 12 \ (^{95}\text{Pd} \ \varepsilon \ \text{decay (13.3 s)}), \\ &1350.7 \ 2 \ (^{58}\text{Ni}(^{40}\text{Ca}, 3p\gamma), \ ^{64}\text{Zn}(^{36}\text{Ar}, p\alpha\gamma)). \end{aligned}$
1430?	$(11/2^+)$	1430 ^{@a} 20	100	0.0	9/2+			
1570?	$(5/2^-, 3/2^+)$	1027 ^{@a} 10	100	543.3	$(1/2)^{-}$			
2067.53	(17/2 ⁺)	716.52 <i>16</i>	100	1350.97	(13/2 ⁺)	(E2)	0.00211 3	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00184 \ 3; \ \alpha(\mathbf{L}) = 0.000221 \ 3; \ \alpha(\mathbf{M}) = 4.10 \times 10^{-5} \ 6; \\ &\alpha(\mathbf{N}) = 6.75 \times 10^{-6} \ 10; \ \alpha(\mathbf{O}) = 3.27 \times 10^{-7} \ 5 \\ &\alpha(\mathbf{N}+) = 7.08 \times 10^{-6} \ 10 \\ &\text{Mult.: } \mathbf{Q} \ \text{from } \gamma(\theta); \ \text{assumed E2 by } \mathbf{1980No06.} \\ &\mathbf{E}_{\gamma}: \ \text{weighted average of } 716.6 \ 1 \ (^{95}\text{Pd} \ \varepsilon \ \text{decay } (13.3 \ \text{s})), \ 716.2 \ 2 \\ &(^{58}\text{Ni}(^{40}\text{Ca},3p\gamma), \ ^{64}\text{Zn}(^{36}\text{Ar},p\alpha\gamma)). \end{aligned}$
2080	$(15/2^+, 17/2^+)$	729 ^a 10	100	1350.97	$(13/2^+)$			
2236.37	(17/2 ⁻)	168.84 <i>9</i>	100	2067.53	(17/2 ⁺)	(E1) ^{&}	0.0324	$\alpha(K)=0.0284 4; \alpha(L)=0.00333 5; \alpha(M)=0.000615 9; \alpha(N)=0.0001007 15; \alpha(O)=4.72\times10^{-6} 7\alpha(N+)=0.0001053 15B(E1)(W.u.)=3.48×10^{-6} 19E\gamma: weighted average of 168.8 1 (95Pd \varepsilon decay (13.3 s)), 169.0 2(58Ni(40Ca.3p\gamma), 64Zn(36Ar.pag.$
2264.10	(17/2 ⁺)	913.14 <i>12</i>	100	1350.97	(13/2+)	(E2)	0.001163 17	$\alpha(K)=0.001018 \ 15; \ \alpha(L)=0.0001196 \ 17; \ \alpha(M)=2.22\times10^{-5} \ 4 \\ \alpha(O)=1.82\times10^{-7} \ 3; \ \alpha(N+)=3.85\times10^{-6} \\ E_{\gamma}: \text{ weighted average of } 913.2 \ 1 \ (^{95}\text{Pd}\ \varepsilon \text{ decay } (13.3 \text{ s})), \ 912.9 \ 2 \\ (^{58}\text{W})^{\prime}(^{40}\text{Ce}\ 2\pi\omega) \ (^{47}\text{Ce}^{\prime})^{6} \\ (^{58}\text{Ce}^{\prime})^{6} \\$
2449.13	(21/2+)	185.04 9	12.7 4	2264.10	(17/2+)	(E2)	0.1495	$\alpha(K) = 0.1253 \ I8; \ \alpha(L) = 0.0199 \ 3; \ \alpha(M) = 0.00373 \ 6; \ \alpha(N) = 0.000593 \ 9; \ \alpha(O) = 2.00 \times 10^{-5} \ 3 \ \alpha(N+) = 0.000613 \ 9$

	Adopted Levels, Gammas (continued)											
						γ (⁹⁵ R)	h) (continued)					
E _i (level)	J^π_i	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [#]	α	Comments				
2449.13	(21/2+)	381.59 <i>17</i>	100.0 <i>21</i>	2067.53	(17/2+)	(E2)	0.01289	B(E2)(W.u.)=4.4 5 E _γ : weighted average of 185.0 1 (⁹⁵ Pd ε decay (13.3 s)), 185.2 2 (⁵⁸ Ni(⁴⁰ Ca,3pγ), ⁶⁴ Zn(³⁶ Ar,pαγ)). I _γ : weighted average of 12.8 4 (⁹⁵ Pd ε decay (13.3 s)), 11.5 15 (⁵⁸ Ni(⁴⁰ Ca,3pγ), ⁶⁴ Zn(³⁶ Ar,pαγ)). α (K)=0.01112 16; α (L)=0.001451 21; α (M)=0.000270 4; α (N)=4.40×10 ⁻⁵ 7; α (O)=1.91×10 ⁻⁶ 3 α (N+)=4.59×10 ⁻⁵ 7 B(E2)(W.u.)=0.92 9				
								E _γ : weighted average of 381.8 <i>l</i> (⁹⁵ Pd ε decay (13.3 s)), 381.5 2 (⁵⁸ Ni(⁴⁰ Ca,3pγ), ⁶⁴ Zn(³⁶ Ar,pαγ)). I _γ : weighted average of 100 <i>3</i> (⁹⁵ Pd ε decay (13.3 s)), 100 <i>3</i> (⁵⁸ Ni(⁴⁰ Ca,3pγ), ⁶⁴ Zn(³⁶ Ar,pαγ)).				
2973.13 3095.9	(21/2 ⁺ ,23/2 ⁺)	524.0 <i>1</i> 859.9 <i>3</i> 1028.2 <i>2</i>	100 16 5 100 6	2449.13 2236.37 2067.53	$\begin{array}{c} (21/2^+) \\ (17/2^-) \\ (17/2^+) \end{array}$							
3129.43 3241.3	(21/2 ⁻)	680.3 <i>1</i> 1004.95 <i>15</i>	100	2449.13 2236.37	(21/2 ⁺) (17/2 ⁻)	(E2)	0.000933 13	$\alpha(K)=0.000817 \ 12; \ \alpha(L)=9.54\times10^{-5} \ 14; \ \alpha(M)=1.768\times10^{-5} \ 25$ $\alpha(O)=1.466\times10^{-7} \ 21; \ \alpha(N+)=3.07\times10^{-6}$ B(E2)(W.u.)=4.66 \ 21 E _y : weighted average of 1005.1 2 (⁹⁵ Pd ε decay (13.3 s)), 1004.8 2 (⁵⁸ Ni(⁴⁰ Ca 3m)) ⁶⁴ Zn(³⁶ Ar pco))				
3723.7	(25/2+)	1274.7 [‡] 2	100	2449.13	(21/2+)	(E2)	0.000577 8	$\alpha(K)=0.000489 \ 7; \ \alpha(L)=5.63\times10^{-5} \ 8; \ \alpha(M)=1.042\times10^{-5} \ 15; \alpha(O)=8.79\times10^{-8} \ 13 \alpha(N+)=2.17\times10^{-5} \ 3 B(E2)(Wu)>4.7$				
3837.3		1600.6 <i>3</i> 1770.5 <i>5</i>	100 <i>4</i> 17 <i>3</i>	2236.37 2067.53	$(17/2^{-})$ $(17/2^{+})$							
3908.8	(25/2 ⁻)	667.4 2	100	3241.3	(21/2 ⁻)	(E2)	0.00253 4	$\begin{aligned} \alpha(\mathbf{K}) &= 0.00221 \ 3; \ \alpha(\mathbf{L}) &= 0.000267 \ 4; \ \alpha(\mathbf{M}) &= 4.96 \times 10^{-5} \ 7; \\ \alpha(\mathbf{N}) &= 8.17 \times 10^{-6} \ 12; \ \alpha(\mathbf{O}) &= 3.92 \times 10^{-7} \ 6 \\ \alpha(\mathbf{N}+) &= 8.56 \times 10^{-6} \ 12 \\ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) &= 6.6 \ 4 \end{aligned}$				
4135.2 4163.4 4241.9	(21/2+)	1898.8 <i>5</i> 1927.0 <i>5</i> 1792.7 <i>2</i>	100 100 100	2236.37 2236.37 2449.13	$(17/2^{-})$ $(17/2^{-})$ $(21/2^{+})$							
5458.3	(25/2+)	1216.4 2	14 4	4241.9	(21/2+)	(E2)	0.000625 9	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000539 \ 8; \ \alpha(\mathbf{L}) = 6.22 \times 10^{-5} \ 9; \ \alpha(\mathbf{M}) = 1.152 \times 10^{-5} \ 17; \\ &\alpha(\mathbf{N}) = 1.91 \times 10^{-6} \ 3 \\ &\alpha(\mathbf{O}) = 9.69 \times 10^{-8} \ 14; \ \alpha(\mathbf{N}+) = 1.173 \times 10^{-5} \ 17 \\ &\mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) > 0.72 \end{aligned}$				

4

$\gamma(^{95}\text{Rh})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${f J}_f^\pi$	Mult. [#]	α	Comments
5458.3	(25/2+)	1734.4 [‡] 2	100 5	3723.7	(25/2+)	(M1)	0.000487 7	$\alpha(K)=0.000287 \ 4; \ \alpha(L)=3.24\times10^{-5} \ 5; \ \alpha(M)=6.00\times10^{-6} \ 9; \\ \alpha(N)=9.99\times10^{-7} \ 14 \\ \alpha(O)=5.22\times10^{-8} \ 8; \ \alpha(N+)=0.0001614 \ 23 \\ B(M1)(Wn)>0.0026$
6119.7	(27/2 ⁺)	661.3 2 2396.1 2	100 <i>18</i> 39 <i>12</i>	5458.3 3723.7	$(25/2^+)$ $(25/2^+)$			D(111)(11.0.0020
6212.2	(29/2+)	92.8 2	13 <i>3</i>	6119.7	(27/2+)	(M1)	0.423	α (K)=0.368 6; α (L)=0.0450 7; α (M)=0.00839 13; α (N)=0.001389 22; α (O)=6.90×10 ⁻⁵ 11 α (N+)=0.001458 23 B(M1)(W.u.)=0.28 8
		753.7 2	100 8	5458.3	(25/2+)	(E2)	0.00185 3	$\alpha(K)=0.001617\ 23;\ \alpha(L)=0.000193\ 3;\ \alpha(M)=3.59\times10^{-5}\ 5;\alpha(N)=5.92\times10^{-6}\ 9;\ \alpha(O)=2.88\times10^{-7}\ 4\alpha(N+)=6.21\times10^{-6}\ 9B(F2)(Wu)=7\ 2\ 10$
		2488.5 2	72 6	3723.7	(25/2+)	(E2)	0.000696 10	$\alpha(K)=0.0001379\ 20;\ \alpha(L)=1.549\times10^{-5}\ 22;\ \alpha(M)=2.86\times10^{-6}\ 4$ $\alpha(O)=2.48\times10^{-8}\ 4;\ \alpha(N+)=0.000540$ B(E2)(W,u)=0.0132\ 18
6405.3	(27/2 ⁻)	2496.4 2	100	3908.8	(25/2 ⁻)	(M1)	0.000674 10	α (K)=0.0001413 20; α (L)=1.587×10 ⁻⁵ 23; α (M)=2.94×10 ⁻⁶ 5 α (O)=2.56×10 ⁻⁸ 4; α (N+)=0.000514 B(M1)(W.u.)>0.0020
6585.4	(27/2 ⁻)	2676.6 2	100	3908.8	(25/2 ⁻)	(M1)	0.000738 11	$\alpha(K)=0.0001241 \ I8; \ \alpha(L)=1.392\times10^{-5} \ 20; \ \alpha(M)=2.57\times10^{-6} \ 4 \\ \alpha(O)=2.25\times10^{-8} \ 4; \ \alpha(N+)=0.000598 \\ B(M1)(W,u,)>0.0016$
6699.2	(29/2 ⁻)	114.1 2	5.8 19	6585.4	(27/2 ⁻)	(M1)	0.237	α (K)=0.207 3; α (L)=0.0251 4; α (M)=0.00468 7; α (N)=0.000776 12; α (O)=3.87×10 ⁻⁵ 6 α (N+)=0.000814 12 B(M1)(W.u.)=0.8 3
		293.8 2	23 4	6405.3	(27/2 ⁻)	(M1)	0.0190	$\alpha(K)=0.01660\ 24;\ \alpha(L)=0.00197\ 3;\ \alpha(M)=0.000365\ 6;\ \alpha(N)=6.06\times10^{-5}$ 9; $\alpha(O)=3.08\times10^{-6}\ 5$ $\alpha(N+)=6.37\times10^{-5}\ 9$ B(M1)(W.u.)=0.18\ 4
		2790.3 2	100 4	3908.8	(25/2 ⁻)	(E2)	0.000807 12	α (K)=0.0001132 <i>16</i> ; α (L)=1.269×10 ⁻⁵ <i>18</i> ; α (M)=2.34×10 ⁻⁶ <i>4</i> α (O)=2.04×10 ⁻⁸ <i>3</i> ; α (N+)=0.000679 B(E2)(W.u.)=0.117 <i>10</i>
6795.1	(31/2+)	582.9 [‡] 2	100	6212.2	(29/2+)	(M1)	0.00354 5	$\alpha(K)=0.00310 \ 5; \ \alpha(L)=0.000360 \ 5; \ \alpha(M)=6.67\times10^{-5} \ 10; \\ \alpha(N)=1.109\times10^{-5} \ 16; \ \alpha(O)=5.71\times10^{-7} \ 8 \\ \alpha(N+)=1.166\times10^{-5} \ 17 \\ B(M1)(Wn)>0.16$
7064.9?	(29/2 ⁻)	479.4 2	100	6585.4	$(27/2^{-})$			

S

 $^{95}_{45}\text{Rh}_{50}\text{-}5$

$\gamma(^{95}$ Rh) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α	Comments
7139.5 7512.6	$(33/2^+)$ $(31/2^-)$	344.4 2 447.5 2 813.3 2	100 100 <i>35</i> 83 28	6795.1 7064.9? 6699.2	$(31/2^+) (29/2^-) (29/2^-)$			
7625.1	(35/2+)	485.6 2	44 7	7139.5	(33/2 ⁺)	(M1)	0.00547 8	$\alpha(K)=0.00479\ 7;\ \alpha(L)=0.000558\ 8;\ \alpha(M)=0.0001036\ 15;\ \alpha(N)=1.721\times10^{-5}$
		830 1 2	100.5	6705 1	$(31/2^+)$	(E2)	0 001460 21	$\alpha(O) = 8.83 \times 10^{-7} \ 13; \ \alpha(N+) = 1.81 \times 10^{-5} \ 3$ B(M1)(W.u.)=0.0040 \ 10 $\alpha(K) = 0.001276 \ 18; \ \alpha(L) = 0.0001511 \ 22; \ \alpha(M) = 2.80 \times 10^{-5} \ 4$
		850.1 2	100 5	0795.1	(31/2)	(E2)	0.001400 21	$\alpha(N)=0.001270$ 76, $\alpha(L)=0.0001311$ 22, $\alpha(M)=2.80\times10^{-4}$ $\alpha(O)=2.28\times10^{-7}$ 4; $\alpha(N+)=4.86\times10^{-6}$ B(E2)(W.u.)=2.6 5
7846.2	(33/2 ⁻)	333.3 2	40 5	7512.6	(31/2 ⁻)	(M1)	0.01380	$\alpha(K)=0.01207 \ 17; \ \alpha(L)=0.001423 \ 20; \ \alpha(M)=0.000264 \ 4; \ \alpha(N)=4.39\times10^{-5} \ 7; \ \alpha(O)=2.24\times10^{-6} \ 4 \ \alpha(N+)=4.61\times10^{-5} \ 7$
		1147.2 2	100 5	6699.2	(29/2 ⁻)	(E2)	0.000699 10	B(M1)(W.u.)=0.09676 α (K)=0.0006119; α (L)=7.07×10 ⁻⁵ 10; α (M)=1.310×10 ⁻⁵ 19 α (O)=1.097×10 ⁻⁷ 16; α (N+)=4.62×10 ⁻⁶ 7 B(F2)(Wu)=4.45
8395.0	(35/2-)	548.9 2	100 7	7846.2	(33/2-)	(M1)	0.00408 6	$\begin{aligned} \alpha(\mathbf{K}) &= 0.00357 \ 5; \ \alpha(\mathbf{L}) = 0.000415 \ 6; \ \alpha(\mathbf{M}) = 7.70 \times 10^{-5} \ 11; \ \alpha(\mathbf{N}) = 1.280 \times 10^{-5} \\ 18; \ \alpha(\mathbf{O}) &= 6.58 \times 10^{-7} \ 10 \\ \alpha(\mathbf{N}+) &= 1.346 \times 10^{-5} \ 19 \\ \mathbf{D}(\mathbf{M}) &= 0.0055 \ 8 \end{aligned}$
		769.9 2	10 4	7625.1	(35/2+)	(E1)	0.000680 10	$\begin{array}{l} \alpha(\text{M}) = 0.00597 & 9; \ \alpha(\text{L}) = 6.79 \times 10^{-5} & 10; \ \alpha(\text{M}) = 1.254 \times 10^{-5} & 18 \\ \alpha(\text{O}) = 1.060 \times 10^{-7} & 15; \ \alpha(\text{N}+) = 2.19 \times 10^{-6} & 3 \\ \text{B}(\text{E}1)(\text{Wu}) = 3.5 \times 10^{-5} & 15 \end{array}$
8656.0	(37/2 ⁻)	261.0 2	100 4	8395.0	(35/2-)	(M1)	0.0257	$\begin{aligned} \alpha(K) = 0.0225 \ 4; \ \alpha(L) = 0.00267 \ 4; \ \alpha(M) = 0.000496 \ 7; \ \alpha(N) = 8.24 \times 10^{-5} \ 12; \\ \alpha(O) = 4.18 \times 10^{-6} \ 6 \\ \alpha(N+) = 8.66 \times 10^{-5} \ 13 \\ P(M) W = 0.022 \ 10 \end{aligned}$
		809.7 2	12 4	7846.2	(33/2 ⁻)	(E2)	0.001551 22	B(M1)(w.u.)=0.95 19 $\alpha(K)=0.001355 \ 19; \ \alpha(L)=0.0001608 \ 23; \ \alpha(M)=2.98\times10^{-5} \ 5$ $\alpha(O)=2.42\times10^{-7} \ 4; \ \alpha(N+)=5.17\times10^{-6}$ B(E2)(Wu)=5.7.22
8875.3	(39/2+)	1250.1 2	100	7625.1	(35/2+)	(E2)	0.000596 9	$\begin{aligned} \alpha(\mathbf{K}) &= 0.000509 \ 8; \ \alpha(\mathbf{L}) &= 5.87 \times 10^{-5} \ 9; \ \alpha(\mathbf{M}) &= 1.086 \times 10^{-5} \ 16; \\ \alpha(\mathbf{N}) &= 1.80 \times 10^{-6} \ 3 \\ \alpha(\mathbf{O}) &= 9.15 \times 10^{-8} \ 13; \ \alpha(\mathbf{N}+) &= 1.717 \times 10^{-5} \ 25 \end{aligned}$
9346.6	(39/2 ⁻)	690.5 2	100 6	8656.0	(37/2 ⁻)	(M1)	0.00239 4	B(E2)(W.u.)>3.6 $\alpha(K)=0.00209 \ 3; \ \alpha(L)=0.000241 \ 4; \ \alpha(M)=4.48\times10^{-5} \ 7; \ \alpha(N)=7.44\times10^{-6} \ 11; \ \alpha(O)=3.84\times10^{-7} \ 6 \ \alpha(N+)=7.83\times10^{-6} \ 11 \ P(M)(Wu) > 0.056$
		951.7 2	19 7	8395.0	(35/2-)	(E2)	0.001057 15	$\alpha(K)=0.000925 \ 13; \ \alpha(L)=0.0001084 \ 16; \ \alpha(M)=2.01\times10^{-5} \ 3$

6

γ (⁹⁵Rh) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [#]	α	Comments	
								$\alpha(O)=1.657 \times 10^{-7} 24; \ \alpha(N+)=3.49 \times 10^{-6}$ B(E2)(Wu)>4.5	
10653.3	$(41/2^{-})$	1306.7 2	100 <i>31</i>	9346.6	$(39/2^{-})$			D(L2)(W.u.)>4.5	
		1997.3 2	43 29	8656.0	$(37/2^{-})$				
11368.0		2021.4 2	100	9346.6	$(39/2^{-})$				
11967.1?	$(41/2^+)$	3091.9 2	100	8875.3	$(39/2^+)$				
12113.9	$(41/2^+)$	3238.6 2	100	8875.3	$(39/2^+)$				
12194.7		2848.1 2	100	9346.6	$(39/2^{-})$				
12434.6	$(43/2^+)$	467.6 2	1.0×10 ² 3	11967.1?	$(41/2^+)$				
		3559.2 2	46 11	8875.3	$(39/2^+)$				
12869.1	$(41/2^{-}, 43/2^{-})$	3522.4 2	100	9346.6	$(39/2^{-})$				
13876.4	$(45/2^+, 47/2^+)$	1441.8 2	100	12434.6	$(43/2^+)$				

[†] From ⁹⁵Rh IT decay (18.8 ns) 1994Ro08, except as noted.

[±] A common $T_{1/2}=23$ ps 6 has been reported for these γ 's in 1980No06 from RDDS measurement.

[#] From $\gamma(\theta)$ and cascading pattern of γ -decay (1994Ro08).

[@] Uncertainty from measured proton energies in 2003Ba39.

 \neg

[&] From the I γ (1004.95) and I γ (168.84) one can obtain α =0.344. However, α (E1)=0.032 which indicates a possible problem with the E1 assignment. On the other hand α (E2)=0.21 but would have a large B(E2) (=8.5 5 w.u) which may not commensurate with this magic nucleus as quoted in 1980No06. Also, the value of I γ (169.0) may be low because of the half life of this state.

^{*a*} Placement of transition in the level scheme is uncertain.

⁹⁵₄₅Rh₅₀-7

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{95}_{45} Rh_{50}$

 $^{95}_{45}\text{Rh}_{50}$

Adopted Levels, Gammas

 $^{95}_{45}\rm{Rh}_{50}$