⁵⁸Ni(⁴⁰Ca,3p γ),⁶⁴Zn(³⁶Ar,p $\alpha\gamma$) 1994Ro08,1983Gr33

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. K. Basu, G. Mukherjee, A. A. Sonzogni	NDS 111, 2555 (2010)	30-Jun-2009

1994Ro08: $E({}^{40}Ca) = 180$ MeV, measured $E\gamma$, $I\gamma$, $\gamma(\theta) \gamma\gamma$ -coin using NORDBALL array with 15 HPGe (BGO shielded) at 79°, 101° and 143°; particle identification using neutron wall with 11 liquid sc. and Si ball with 21 detectors.

1998Ju05: $E({}^{40}Ca) = 145$ MeV. Measured $E\gamma$, $I\gamma,\gamma\gamma$ -coin, lifetimes from RDDS using six EUROBALL cluster detectors at 41° and 139°.

1999Ju04: $E({}^{40}Ca, pulsed) = 145$ MeV. Measured $E\gamma$, $I\gamma(\theta, H, t)$, deduced g factors. IMPAD technique. using an array of six HPGe detectors. 1983Gr33: ⁶⁴Zn(³⁶Ar,p $\alpha\gamma$); E=127 MeV. Measured T_{1/2} and $\gamma(\theta,H)$; Ge(Li) at ±135°. PAD.

All data are from 1994Ro08. Unless mentioned otherwise. Others: 1980No06, 1998Ju05,1999Ju04.

 γ -ray anisotropy R = $2I\gamma(143^{\circ})/[I\gamma(79^{\circ}) + I\gamma(101^{\circ})]$ from thick target experiment, except for a few high energy transitions; (1994Ro08).

⁹⁵Rh Levels

E(level)	J^{π}	$T_{1/2}^{\dagger}$	Comments
0.0‡	9/2+	5.02 min 10	$\% \varepsilon + \% \beta^+ = 100$ T _{1/2} : From Adopted Levels.
1350.71 [‡] 20	$(13/2^+)$		
2067.0 [‡] <i>3</i>	$(17/2^+)$		
2236.1 [#] 3	(17/2 ⁻)	18.8 ns 10	g=1.29 4 (1983Gr33) T _{1/2} : Weighted av of 15 ns 5 (RDDS 1980No06) and 19 ns <i>I</i> (using pulsed beam 1983Gr33).
2263.5 [‡] 3	$(17/2^+)$		
2448.6 [‡] <i>3</i>	$(21/2^+)$	2.54 ns 22	T _{1/2} : Weighted av of 2.1 ns 3 (1980No06) and 2.65 ns 15 (1998Ju05).
3240.9 [#] 4	$(21/2^{-})$	4.6 ps 2	$T_{1/2}$: Other 26 ps 4 (RDDS 1980No06). Probably not corrected for side feeding.
3723.2 [‡] 3	$(25/2^+)$	<1.4 ps	
3908.3 [#] 4	(25/2 ⁻)	24.9 ps 12	 g=0.90 28 g: weighted average of two measurements, done with Fe- (1.28 19) and Ni-hosts (0.69 14) (1999Ju04).
4241.4 [@] 3	$(21/2^+)$		
5457.8 [@] 3	$(25/2^+)$	<1.4 ps	
6119.1 [‡] 3	$(27/2^+)$		
6211.7 [@] 3	(29/2 ⁺)	6.6 ps 6	g=0.64 <i>31</i> g: Weighted average of two measurements, done with Fe- (0.80 <i>30</i>) and Ni-hosts (0.04 <i>59</i>) (1999Ju04).
6404.8 4	$(27/2^{-})$	<0.7 ps	
6584.9 ^{&} 4	$(27/2^{-})$	<0.7 ps	
6698.7 4	$(29/2^{-})$	0.85 ps 5	
6794.6 ^{^w} 4	$(31/2^+)$	<0.7 ps	
7064.5? 4	$(29/2^{-})$		
7139.0 4	$(33/2^+)$		
7512.1 ^{&} 4	$(31/2^{-})$		
7624.6 [@] 4	(35/2+)	14.8 ps 26	 g=0.41 14 g: Weighted average of two measurements, done with Fe- (0.33 15) and Ni-hosts (0.67 27) (1999Ju04).
7845.7 <mark>&</mark> 4	(33/2-)	1.77 ps 15	
8394.5 ^{&} 4	(35/2 ⁻)	1.86 ps 9	
8655.5 <mark>&</mark> 4	(37/2-)	1.16 ps 22	

Continued on next page (footnotes at end of table)

⁵⁸Ni(⁴⁰Ca,3pγ),⁶⁴Zn(³⁶Ar,pαγ) 1994Ro08,1983Gr33 (continued)

95Rh Levels (continued)

E(level)	J^{π}	T _{1/2} †	E(level)	J^{π}
8874.8 [@] 4	$(39/2^+)$	<2.0 ps	12113.4 5	$(41/2^+)$
9346.1 ^{&} 4	(39/2 ⁻)	<1.0 ps	12194.3 5	
10652.8 ^{&} 4	$(41/2^{-})$		12434.1 5	$(43/2^+)$
11367.5 5			12868.6 5	$(41/2^-, 43/2^-)$
11966.6? [@] 5	$(41/2^+)$		13875.9 5	$(45/2^+, 47/2^+)$

[†] From RDDS measured by 1998Ju05 except as noted.

[‡] Band(A): +ve parity yrast band.

Band(B): -ve parity yrast band.

[@] Band(C): +ve parity side band.

& Band(D): -ve parity side band.

$\gamma(^{95}\text{Rh})$

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
92.8 2	26 5	6211.7	$(29/2^+)$	6119.1	$(27/2^+)$	(M1)	R=0.56 20.
114.1 2	12 4	6698.7	$(29/2^{-})$	6584.9	$(27/2^{-})$	(M1)	
169.0 2	372 11	2236.1	$(17/2^{-})$	2067.0	$(17/2^+)$	(E1) [#]	R>1.15 5.
185.2 2	47 6	2448.6	$(21/2^+)$	2263.5	$(17/2^+)$	(E2)	R=1.23 <i>39</i> .
261.0 2	252 10	8655.5	$(37/2^{-})$	8394.5	$(35/2^{-})$	(M1)	R=0.89 6.
293.8 2	479	6698.7	$(29/2^{-})$	6404.8	$(27/2^{-})$	(M1)	
333.3 2	78 <i>9</i>	7845.7	$(33/2^{-})$	7512.1	$(31/2^{-})$	(M1)	R=0.66 16.
344.4 2	96 11	7139.0	$(33/2^+)$	6794.6	$(31/2^+)$		R=0.85 25.
381.5 2	407 13	2448.6	$(21/2^+)$	2067.0	$(17/2^+)$	(E2)	R=1.36 7.
447.5 2	35 15	7512.1	$(31/2^{-})$	7064.5?	$(29/2^{-})$		
467.6 2	37 12	12434.1	$(43/2^+)$	11966.6?	$(41/2^+)$		
479.4 2	50 11	7064.5?	$(29/2^{-})$	6584.9	$(27/2^{-})$		R=0.69 40.
485.6 2	112 18	7624.6	$(35/2^+)$	7139.0	$(33/2^+)$	(M1)	R=0.63 20.
548.9 2	259 18	8394.5	$(35/2^{-})$	7845.7	$(33/2^{-})$	(M1)	R=1.12 16.
582.9 [†] 2	362 20	6794.6	$(31/2^+)$	6211.7	$(29/2^+)$	(M1)	R=0.69 7.
661.3 2	57 10	6119.1	$(27/2^+)$	5457.8	$(25/2^+)$		R=0.68 22.
667.4 2	504 18	3908.3	$(25/2^{-})$	3240.9	$(21/2^{-})$	(E2)	R=1.48 9.
690.5 2	193 <i>12</i>	9346.1	$(39/2^{-})$	8655.5	$(37/2^{-})$	(M1)	R=0.87 10.
716.2 2	901 21	2067.0	$(17/2^+)$	1350.71	$(13/2^+)$	(E2)	Mult.: Q from $\gamma(\theta)$; assumed E2 by 1980No06.
							R>1.14 4.
753.7 2	196 15	6211.7	$(29/2^+)$	5457.8	$(25/2^+)$	(E2)	R=2.10 <i>31</i> .
769.9 2	26 10	8394.5	$(35/2^{-})$	7624.6	$(35/2^+)$	(E1)	
809.7 2	30 11	8655.5	$(37/2^{-})$	7845.7	$(33/2^{-})$	(E2)	R=1.60 94.
813.3 2	29 10	7512.1	$(31/2^{-})$	6698.7	$(29/2^{-})$		
830.1 2	253 12	7624.6	$(35/2^+)$	6794.6	$(31/2^+)$	(E2)	R=1.71 15.
912.9 2	76 16	2263.5	$(17/2^+)$	1350.71	$(13/2^+)$	(E2)	R=1.99 89.
951.7 2	36 13	9346.1	$(39/2^{-})$	8394.5	$(35/2^{-})$	(E2)	
1004.8 2	500 12	3240.9	$(21/2^{-})$	2236.1	$(17/2^{-})$	(E2)	R=1.66 8.
1147.2 2	195 9	7845.7	$(33/2^{-})$	6698.7	$(29/2^{-})$	(E2)	R=1.54 14.
1216.4 2	36 10	5457.8	$(25/2^+)$	4241.4	$(21/2^+)$	(E2)	
1250.1 2	183 <i>13</i>	8874.8	$(39/2^+)$	7624.6	$(35/2^+)$	(E2)	R=1.53 <i>16</i> .
1274.7 [†] 2	429 16	3723.2	$(25/2^+)$	2448.6	$(21/2^+)$	(E2)	R=1.80 <i>12</i> .
1306.7 2	35 11	10652.8	$(41/2^{-})$	9346.1	(39/2 ⁻)		
1350.7 2	1000 17	1350.71	$(13/2^+)$	0.0	9/2+	(E2)	R=1.20 4.

Mult.: Q from $\gamma(\theta)$; assumed E2 by 1980No06.

Continued on next page (footnotes at end of table)

								-	
$\gamma(^{95}\text{Rh})$ (continued)									
Eγ	I_{γ}	E _i (level)	J_i^π	E_f	${ m J}_f^\pi$	Mult.‡		Comments	
1441.8 2	29 10	13875.9	$(45/2^+, 47/2^+)$	12434.1	$(43/2^+)$				
1734.4 [†] 2 1792.7 2	254 <i>12</i> 33 <i>10</i>	5457.8 4241.4	(25/2 ⁺) (21/2 ⁺)	3723.2 2448.6	(25/2 ⁺) (21/2 ⁺)	(M1)	R=1.58 <i>14</i> . R=1.45 <i>73</i> .		
1997.3 2 2021.4 2	15 9 49 <i>13</i>	10652.8 11367.5	$(41/2^{-})$	8655.5 9346.1	$(37/2^{-})$ $(39/2^{-})$ $(25/2^{+})$				
2396.1 2 2488.5 2	142 12	6119.1 6211.7	$(27/2^+)$ $(29/2^+)$	3723.2 3723.2	$(25/2^+)$ $(25/2^+)$	(E2)	R=1.72 29.		
2496.4 2 2676.6 2	73 8 37 6	6404.8 6584.9	$(27/2^{-})$ $(27/2^{-})$	3908.3 3908.3	$(25/2^{-})$ $(25/2^{-})$	(M1) (M1)	R=1.94 44.		
2790.3 2 2848.1 2	206 9 16 8	6698.7 12194.3	(29/2 ⁻)	3908.3 9346.1	$(25/2^{-})$ $(39/2^{-})$	(E2)	R=1.73 9.		
3091.9 2 3238.6 2	24 7 19 8	11966.6? 12113.4	$(41/2^+)$ $(41/2^+)$	8874.8 8874.8	$(39/2^+)$ $(39/2^+)$		R=0.56.30		
3522.4 2	10 4	12868.6	$(41/2^-, 43/2^-)$ $(42/2^+)$	9346.1	$(39/2^{-})$ $(39/2^{-})$		P_1 27 66		
3339.2 2	1/4	12434.1	(45/2)	00/4.8	$(39/2^{+})$		K=1.3/00.		

⁵⁸Ni(⁴⁰Ca,3pγ),⁶⁴Zn(³⁶Ar,pαγ) **1994Ro08,1983Gr33** (continued)

[†] A common $T_{1/2}=23$ ps 6 has been reported for these γ 's in 1980No06 from RDDS measurement.

[±] From γ -ray anisotropy R and cascading pattern of γ -decay.

[#] From the I γ (1004.8) and I γ (169.0) one can obtain α =0.344. However, α (E1)=0.032 which indicates a problem with the E1 assignment. On the other hand α (E2)=0.21 but would have a large B(E2) (=8.5 5 W.U) which may not commensurate with this magic nucleus as quoted in 1980No06. Also, the value of I γ (169.0) may be low because of the half life of this state.

 $^{95}_{45}Rh_{50}-4$

 $^{95}_{45}Rh_{50}$

4

 $^{95}_{45}\text{Rh}_{50}$

58 Ni(40 Ca,3p γ), 64 Zn(36 Ar,p $\alpha\gamma$) 1994Ro08,1983Gr33

