95 Nb β^- decay (34.991 d) 1999BeZS,1999BeZQ

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. K. Basu, G. Mukherjee, A. A. Sonzogni	NDS 111, 2555 (2010)	30-Jun-2009

Parent: ⁹⁵Nb: E=0.0; $J^{\pi}=9/2^+$; $T_{1/2}=34.991$ d 6; $Q(\beta^-)=925.6$ 5; $\%\beta^-$ decay=100.0

Evaluation by R.G. Helmer, July 1998 including some general comments from previous evaluation (1993Bu08). This evaluation was done as part of a collaboration of evaluators from Laboratoire National Henri Becquerel (lnhb) in France;

Physikalisch-Technische Bundesanstalt (ptb) in Germany; hms Sultan and aea Technology in the United Kingdom; Khlopin Radium Institute (kri) in Russia; Centro de Investigaciones Energeticas, Medioambientales, y Tecnologicas (CIEMAT) and Universidad Nacional a Distancia (UNED) in Spain; and Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Idaho National Engineering and Environmental Laboratory (INEEL) in the United States.

Measurements include: β^{-1} 's and ce's (mag spect, pc, Si) (1963La06); see 95 Zr β^{-1} decay for details (1974An22); γ' s for a mixed 35-day and 3.61-d 95 Nb source and a mixed 95 Zr and 95 Nb source, Compton-suppressed Ge(Li), lead attenuator to enhance high-energy γ' s (1976Ho04); γ' s, Ge(Li), energy difference method (1979Gr01).

For previous evaluation, see 1991BaZS.

 α : Additional information 1.

⁹⁵Mo Levels

E(level)	J^{π}	$T_{1/2}^{\dagger}$
0.0 204.116 2 765.803 8	5/2 ⁺ 3/2 ⁺ 7/2 ⁺	stable 751 ps 9

[†] From the ⁹⁵Mo Adopted Levels.

β^{-} radiations

The unobserved β transitions to the 786- and 820-keV states are 4th forbidden and unique 2nd forbidden, respectively. From the log *ft* systematics of 1998Si17, the feeding of these levels are expected to be <1.0×10⁻¹⁵% and <1.0×10⁻⁸%, respectively, and, therefore, are completely negligible.

Probability of K-shell autoionization= $3.4 \times 10^{-4} 4$ (1976Ju02. X γ -coin; NaI,Ge(Li)).

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
159.7 5	765.803	99.970 6	5.091 5	av Eβ=43.34 15
				E(decay): from 1963La06.
(721.5 5)	204.116	≤ 0.0020	$\geq 12.7^{2u}$	av E β =283.56 20
(925.6 5)	0.0	0.030 5	11.2 <i>I</i>	 Iβ⁻: from log <i>ft</i> systematics (1998Si17) for unique 2nd forbidden transition. Intensity balance gives I_{β-}=0.014% 9, this may suggest the mixing ratio is more nearly pure E2 which would give a smaller α_K(204). av Eβ=321.94 21 Iβ⁻: from 1974An22; others: ≤0.11 from log <i>ft</i> systematics (1998Si17) where the log <i>ft</i>'s are >10.6 for 2nd forbidden transitions.

[†] Absolute intensity per 100 decays.

			⁹⁵ Nbβ⁻	- decay (3	4.991 d	l) 19991	BeZS,1999E	BeZQ (continue	<u>d)</u>
$\gamma^{(95}$ Mo)									
E_{γ}^{\dagger}	Iγ [‡]	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α	Comments
204.1161 17	0.028 9	204.116	3/2+	0.0	5/2+	M1+E2	-0.62 7	0.052 3	ce(K)/(γ+ce)=0.0429; ce(L)/(γ+ce)=0.0055 4; ce(M)/(γ+ce)=0.00098 4; ce(N)/(γ+ce)=0.00017 1 α(K)=0.0449 23; α(L)=0.0058 4; α(M)=0.00103 7; α(N)=0.000154 9; α(O)=7.5×10 ⁻⁶ 4 α(N+)=0.000161 10 I _γ : γ not observed in this decay, but is seen in ⁹⁵ Tc ε decay. I _γ computed from ce _K (204)/ce _K (765)=0.010 3 (1974An22), α _K (204)=0.046, and α _K (765)=0.00128. See comment on I _β -(204).
561.88	0.015 3	765.803	7/2+	204.116	3/2+	(E2)		0.00338 5	$\alpha(K)=0.00296\ 5;$ $\alpha(L)=0.000350\ 5;$ $\alpha(M)=6.26\times10^{-5}\ 9;$ $\alpha(N)=9.43\times10^{-6}\ 14;$ $\alpha(O)=5.00\times10^{-7}\ 7$ $\alpha(N+)=9.93\times10^{-6}\ 14$ $E_{\gamma}:$ the 204 and 561 γ energies are not consistent with the 765 γ energy; $E_{\gamma}(204)+E_{\gamma}(561)-E_{\gamma}(765)=$ 0.19 keV 2. The 765 and 204 values imply $E_{\gamma}(561)=561.69.$ $I_{\gamma}:$ from directly measured values of 0.015 1 (1976Ho04) and 0.015 6 (1977Me12); other: 0.011 3 deduced from $ce_{K}(561)/ce_{K}(765)=0.00025\ 5$ (1974An22), $\alpha_{K}(561)=0.0029,$ and $\alpha_{V}(765)=0.00128$
765.803 6	99.808 7	765.803	7/2+	0.0	5/2+	M1+E2	-0.14 9	0.001445 21	$\alpha = 0.001445 \ 21; \ \alpha(K) = 0.001272$ 18; \alpha(L) = 0.0001428 \ 20; \alpha(M) = 2.55 \times 10^{-5} \ 4 \alpha(O) = 2.22 \times 10^{-7} \ 4; \alpha(N+) = 4.11 \times 10^{-6}

[†] From 2000He14 evaluation for the 204 and 765 γ 's and from 1976Ho04 for 561 γ from ⁹⁵Nb (3.61 h) β - decay. [‡] Absolute intensity per 100 decays.

⁹⁵Nb β^- decay (34.991 d) 1999BeZS,1999BeZQ

