Adopted Levels, Gammas

				H	listory					
	Туре		Auth	lor		Citati	ion	Literature Cutoff Date		
	Full Evalu	ation S. K. B	asu, G. Mukher	rjee, A. A. S	onzogni	NDS 111,25	55 (2010)	30-Jun-2009		
$Q(\beta^-) = -1691$ Note: Current of $S(2n) = 17047$ 4 α : Additional is	5; S(n)=736 evaluation h 4, S(2p)=15 information	59.10 <i>10</i> ; S(p)=8 has used the follo 167.4 <i>19</i> (2009A 1.	$3630.4 \ 18; \ Q(\alpha)$ owing Q record AuZZ).)=-2239.4 <i>I</i> I -1691 5	9 2012 5 7369.10	2Wa38 010 8631.4 19	-2241.0 <i>19</i>) 2009AuZZ.		
				⁹⁵ M	lo Levels					
			(Cross Refere	nce (XRI	EF) Flags				
	A C D E F G	⁹⁵ Nb β ⁻ decay ⁹⁵ Nb β ⁻ decay ⁹⁵ Tc ε decay ⁹⁵ Tc ε decay ⁹² Zr(α,nγ), ⁹⁴ ⁹⁴ Mo(n,γ) E= ⁹⁴ Mo(n,γ) E=	y (34.991 d) y (3.61 d) (20.0 h) (61 d) $Zr(\alpha,3n\gamma)$ thermal 24.3 keV	H ⁹⁴ Mo(I ⁹⁴ Mo(J ⁹⁵ Mo(K Coulor L ⁹⁶ Mo(M ⁹⁶ Mo(N ⁹⁶ Mo(d,p) ${}^{13}C, {}^{12}C),$ $\gamma,\gamma):$ res mb excita p,d),(d,t) p,d),(d,t), ${}^{3}He,\alpha)$	$(^{13}C, ^{12}C\gamma)$ fluorescence ttion $(^{3}He, \alpha)$ IAR	0 65 C P 82 So Q 96 M R 94 M S U(p T 16 O	u(³⁶ S, α pn γ) e(¹⁸ O,5n γ) Io(pol p,d) Io(n, γ):resonances ,F) (⁸² Se,3n γ)		
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XR	EF			Com	nments		
0.0 ^{&}	5/2+	stable	ABCDEFGHI J	KL NOPQ ST	$Q = -0$ $J^{\pi}: 5/$ opt $L(d$ $\mu: NM$ $Q: AH$ $cala$ $corr$ $(At$ (19) $\Delta < r^{2}$ unc	$(0.022 \ I; \mu = -0.2)$ from parama ical spectrosco (1,p)=2. MR (Nuclear M B (Atomic bear culated from ra rection include omic beam wi 78Du24). $(9^{5}Mo, 9^{2}Mo)$ certainty is system	9142 <i>I</i> genetic reso py (1951Ai fagnetic Re m magnetic atio and Q($^{(1)}$ d(1989Ra1 th laser dou =+0.410 fm tematic.	pnance (1956Ow04) and r29, 1976Fu06). π =+ from esonance)(2005St24). c resonance,thermal beam) ⁹⁷ Mo); no polarization 7). Other: -0.015 <i>4</i> ABLDF uble resonance detection) n ² 26 (2009Ch09);		
59.3 6	$(5/2^+)$			0	E(leve	el): adopted fo from $(7/2^+)$	llowing ⁶⁵ C	$Cu(^{36}S,\alpha pn\gamma).$		
204.1163 <i>16</i>	3/2+	751 ps 9	ABCDEFGHI	KLNQ	$\mu = -0$ XREH $J^{\pi}: 3/$ Cou $T_{1/2}:$ exc $\mu: IP/$ (19)	1.404 12 (1984) $2^+,5/2^+$ from 1 $2^+,5/2^+$ from 1 1000 ex. from $\gamma\gamma(t)$ in itation. AC (Integral per 76J003).	All1) L(p,d),(d,t)= 61-d ε deca erturbed ang	=2; ≠5/2 from linear pol in ay. Others: see Coulomb gular); Other: −0.378 <i>15</i>		
526.6 4	(7/2 ⁺) ^{<i>d</i>}			0	(1)	100000).				
765.803 ^{&} 8 786.201 <i>3</i> 820.628 <i>4</i>	7/2 ⁺ 1/2 ⁺ 3/2 ⁺	4.4 ps 7 4.33 ps 27 0.62 ps 14	ACE HIJ BDEGHIJ BDEGHIJ	KL NOPQ T KL KL N Q	$\begin{array}{c} {\rm XREH} \\ {\rm J}^{\pi}:7/\\ {\rm fron} \\ {\rm T}_{1/2}:\\ {\rm T}_{1/2}:\\ {\rm J}^{\pi}:{\rm Fr} \\ {\rm XREH} \\ {\rm J}^{\pi}:3/\\ {\rm pol} \\ {\rm T}_{1/2}: \end{array}$	\overline{C} : N(756)Q(77. 2 ⁺ ,9/2 ⁺ from I m L(³ He,α)=4 from σ(res) in from B(E2)↑ i rom angular me \overline{C} : Q(826). 2 ⁺ ,5/2 ⁺ from I in 61-d ε deca from σ(res) in	5). L(d,p)=4; 7 $(\gamma,\gamma).$ in Coul. ex. omentum tr $L(d,p)=2; \neq$ ay. (5/2) from $(\gamma,\gamma).$	$\frac{1}{2}$ from $\gamma(\theta)$ in (γ, γ) ; $7/2^+$ cansfer in (d,p). $\frac{1}{2}5/2$ from $\gamma\gamma(\theta)$ and linear om s(d,t)/s(d,p) discrepant.		

⁹⁵Mo Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
947.685 ^{&} 16	9/2+	2.58 ps 11	C E HIJKL NOPQ T	J ^{π} : 7/2 ⁺ ,9/2 ⁺ from L(d,p)=4; \neq 7/2 from $\gamma(\theta)$ in
1039.269 4	1/2+	0.32 ps 7	B DEFGHIJKL	$T_{1/2}$: weighted av of 2.66 ps 29 (DSAM) and 2.57 12 (B(E2) \uparrow) in Coul. ex. XREF: L(1041). $T_{1/2}$: from B(E2) \uparrow in Coul. ex.
1056.771 20	5/2+	≤0.43 ps	CDEG KLNQ	J^{π} : From angular momentum transfer in (d,p). XREF: L(1044)Q(1049). J^{π} : 3/2 ⁺ ,5/2 ⁺ from L(d,p)=2; 5/2 from primary $I\gamma(135^{\circ})/I\gamma(90^{\circ})$ in (n, γ) E=24.3 keV.
1073.727 16	7/2+	0.34 ps 11	C E IJKL	$T_{1/2}$: from B(E2)↑ in Coul. ex. XREF: L(1092). J ^π : 7/2 ⁺ ,9/2 ⁺ from L(p,d),(d,t)=4; M1+E2 γ to 5/2 ⁺ . $T_{1/2}$: from B(E2)↑ in Coul. ex. and adopted level and γ properties
1092 12	3/2+,5/2+		L	and y properties.
1302.31 7	$1/2^+$		D GH	J^{π} : From angular momentum transfer in (d,p).
1318.23 16	(3/2',5/2')	≤6.9 ns	EF	XREF: F(1324). J^{π} : primary γ from 1/2 ⁺ capture state. Possible d,E2 γ 's to 5/2 ⁺ and 7/2 ⁺ .
1332.9 ^c 4	$(11/2^{-})^{d}$		0	
1369.75 12	(3/2)	≤6.9 ns	DE GH L Q	XREF: H(1364)Q(1356). J^{π} : L(d,p)=2; 3/2 ⁺ from s(d,t)/s(d,p) for 1364 doublet. L(p,d),(d,t)=(1) for 1367 doublet; consistent with (α ny) (α 3ny) reaction
1376.0? 20	3/2+		G K	May correspond to preceding level but energies disagree. J^{π} : L(d,p)=2; 3/2 ⁺ from s(d,t)/s(d,p) for 1364
1425.992 24	(5/2)+	≤6.9 ns	CDE GH L Q	doublet. L(p,d),(d,t)=(1) for 1367 doublet. XREF: H(1420)Q(1412). $J^{\pi}: 3/2^+, 5/2^+$ from L(d,p)=2. $\neq 3/2^+$ from possible d,E2 γ from (9/2) ⁺ . 3/2 from s(d,t)/s(d,p)
1440.02? 13	(7/2+,9/2,11/2)	≤6.9 ns	Е	discrepant. J^{π} : possible D,Q γ to 7/2 ⁺ ; possible D,E2 γ from $11/2^+$.
1540.801 ^{&} 13	$11/2^{+}$	≤6.9 ns	CE OP T	J ^{π} : from $\gamma(\theta)$ and γ -pol in $(\alpha,n\gamma), (\alpha,3n\gamma)$.
1551.772 ^b 18	(9/2)+	≤6.9 ns	CE KLNOP T	XREF: L(1542)N(1584). J^{π} : $7/2^+$, $9/2^+$ from L(p,d),(d,t)=4. $\neq 7/2^+$ from possible (E1) γ from 11/2 ⁻ . $T_{1/2}$: upper limit from γ (t) in (α , $3n\gamma$); lower limit
1620.26 3	3/2+		DGHLQ	from B(E2) ⁺ <0.0042 in Coul. ex. XREF: Q(1603). J^{π} : $3/2^+$, $5/2^+$ from L=2 in (d,p); $\neq 5/2^+$ from log $t=8.1$ (log $t^{\mu}t<8.5$) from $1/2^-$
1645.1? 6	7/2 ⁽⁺⁾		С	J^{π} : 7/2,9/2,11/2 from log <i>ft</i> =6.8 4 from 9/2 ⁺ ; γ to 3/2 ⁺
1660.3? <i>3</i> 1667 8	(≤5/2) 7/2 ⁺ ,9/2 ⁺		D LNQ	$J^{\pi}: \log ft = 11.6 \text{ from } 1/2^{-}.$ XREF: N(1659)Q(1656). E(level): weighted av of 1659 <i>10</i> from (³ He, α) and
1683.0? 10	7/2,9/2 ⁽⁺⁾		С	1674 10 from (p,d),(d,t). J^{π} : 7/2,9/2,11/2 from log <i>ft</i> =6.6 +7-18 from 9/2 ⁺ ; γ to 5/2 ⁺
1692	$1/2^{+}$		Н	J^{π} : L(d,p)=0.
1742.90? 16	(9/2)	≤6.9 ns	E	J^{π} : (1/2 to 9/2) from possible D,Q γ to (3/2 ⁺ ,5/2 ⁺),

⁹⁵Mo Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XR	EF	Comments
					$(7/2^+ \text{ to } 15/2^+)$ from possible D,E2 γ to $11/2^+$, and $(7/2^- \text{ to } 15/2^-)$ from D E2 γ from $11/2^-$
1796.30? 17		≤6.9 ns	E		$J^{\pi_{2}}(7/2^{+} \text{ to } 15/2^{+})$ from possible D,E2 γ to to $11/2^{+}, \leq 7/2$ from possible D,Q γ to $3/2^{+}$, and $(7/2^{-} \text{ to } 15/2^{-})$ from
1808.02? 21	$(7/2^+)$	≤6.9 ns	E		possible D,E2 γ from 11/2 discrepant. J^{π} : $\leq 7/2$ from D,Q γ to $3/2^+$. $(7/2^+$ to $15/2^+)$ from D,E2 γ to to $11/2^+$
1888.54 22	(9/2)+	≤6.9 ns	E	L N Q	XREF: L(1879)N(1886)Q(1859). J ^π : J ^π (1879)=7/2 ⁺ , 9/2 ⁺ from L(p,d),(d,t)=4; J(2059)=13/2 from $\gamma(\theta)$ in (α,nγ),(α,3nγ). J ^π (1879)=9/2 ⁺ , J ^π (2059)=13/2 ⁺ from a possible connecting D F2 γ
1916 5	(9/2)+			Q	J^{π} : L+1 transfer from Ay(θ); 1g _{9/2} for L=4; uncertain assignment either the $\sigma(\theta)$ or the Ay(θ) discrepant DWBA calculations.
1937.47 ^a 7	11/2-	≤6.9 ns	ΕH	LNP T	XREF: L(1942)N(1927). J^{π} : 11/2 ⁻ from L(³ He, α)=5; supported by 9/2 ⁻ ,11/2 ⁻ from L(dx) 5: 11/2 ⁽⁻⁾ from α (d) and α and β and β are β and β
1963	3/2+,5/2+		Н	L	$L(d,p)=3; 11/2^{\gamma}$ from $\gamma(\theta)$ and γ -poi in $(\alpha,n\gamma), (\alpha,n\gamma)$. XREF: $L(1942)$.
1984 15	$3/2^+, 5/2^+$			L	J^{π} : L=2 transfer in (p,d),(d,t).
2024 4	$3/2^+$			Q	J^{π} : L-1 transfer from Ay(θ).
2045 3	$(3/2)^{+}$		FH	L	XREF: $H(2042)L(2050)$. F(level): from 94Mo(n x)
					J^{π} : L(d,p)=2 for 2042. $\neq 5/2^+$ from s(d,t)/s(d,p).
2049	$1/2^+$		Н		$J^{\pi}: L(d,p)=0.$
2058.51 7	$(13/2^{+})$ $(5/2^{-} 7/2^{-})$	≤6.9 ns	Е	РТ	J ^{π} : from a possible connecting stretched E2 γ .
2089	$(3/2)^+$		Н	-	J^{π} : L(d,p)=2; 3/2 from s(d,t)/s(d,p).
2092.9 ^c 6	$(15/2^{-})^{d}$			0	
2118	7/2+,9/2+		Н	L Q	XREF: L(2130)Q(2096).
2152.9	$(5/2)^+$			0	J [*] : From angular momentum transfer in (d,p). I^{π} : From angular momentum transfer in (nol n d)
2169 15	$(3/2)^+$		Н	LQ	XREF: L(2179)Q(2188).
2213 4	1/23/2-		F	L O	J^{π} : L(d,p)=2; 3/2 from s(d,t)/s(d,p). XREF: L(2221)O(2223).
	1 7-1				E(level): from ${}^{94}Mo(n,\gamma)$ E=thermal.
L	1				J^{π} : from (d,t) data of 1970Di06; Unresolved doublet with $E_x=2240 \ 15, L=1+2 \ in \ 1977Bi02.$
2219.2 ⁰ 4	$(13/2)^{+a}$			0	- (1)
2232.27 ^{C} 7	$(15/2)^+$ $(3/2)^+$	≤6.9 ns	E	OP T	J^{π} : stretched E2 γ to 11/2 ⁺ . D+Q γ to 13/2 ⁽⁺⁾ .
22-+-+	(3/2)		п	L	J^{π} : L(d,p)=2; 3/2 from s(d,t)/s(d,p).
2315 8	1/2-,3/2-		Н	LNQ	XREF: Q(2301).
					E(level): weighted av of 2319 12 from (p,d) , (d,t) and 2312 10
					J^{π} : From angular momentum transfer in (d.p).
2357	$1/2^{+}$		Н	L	XREF: L(2375).
2383	$(3/2)^+$		Н	L	J [*] : From angular momentum transfer in (d,p). XREF: L(2375).
2396 10	$(3/2)^+$		ц		J^{*} : L(d,p)=2; 3/2 from s(d,t)/s(d,p). I^{π} : L(d,p)=2; 3/2 from s(d,t)/s(d,p).
2428 13	$7/2^+, 9/2^+$		Н	LNQ	XREF: L(2441)N(2415)Q(2417).
				·	E(level): unweighted av of 2441 12 from (p,d),(d,t) and 2415 10 from (${}^{3}\text{He},\alpha$).

⁹⁵Mo Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		XRE	F			Comments
2491 <i>3</i>	$(3/2)^+$	<u> </u>	F	H				XREF: $H(2488)$.
2501 <i>15</i> 2531 <i>12</i>	(7/2 ⁺ ,9/2 ⁺) 9/2 ⁺				L L N	I Q		J [*] : L(d,p)=2; (3/2) from s(d,t)/s(d,p). J ^{π} : L=4 transfer in (p,d),(d,t). XREF: N(2515)Q(2518). J ^{π} : L+1 transfer from Ay(θ); 1g _{9/2} for L=4, consistent with L=4 transfer in (p,d). (d,t)
2544	$(1/2^-, 3/2^-)$		I	н				J^{π} : From angular momentum transfer in (d,p).
2580.08 ^{&} 10 2595	(17/2) ⁺ 1/2 ⁺	≤6.9 ns	E	Н	L	OP	Т	J^{π} : from $\gamma(\theta)$ and γ -polarization in $(\alpha, n\gamma)$ or $(\alpha, 3n\gamma)$. XREF: L(2610).
2611.14 ^{<i>a</i>} 12 2618.08 ^{&} 11	$(15/2^{-})^{d}$ $(19/2)^{+d}$	≤6.9 ns	E			P P	T T	J . From angular momentum transfer in (u,p).
2695	(3/2 ⁺)		1	H H	L			XREF: L(2680). W_{1} L(d p)=(2); (2/2) from s(d t)/s(d p)
2711 3	1/2-,3/2-				L	Q		J : L(d,p) = (2); (3/2) from s(d,t)/s(d,p). XREF: L(2718).
2725 2732.1 8 2745 2754	$(3/2^+)$ $19/2^+$ $(3/2^+)$ $(3/2^+)$	≤6.9 ns	E	H H H	L	0 Q		J ^{π} : L(d,p)=(2); (3/2) from s(d,t)/s(d,p). J ^{π} : stretched M1(+E2) γ to (13/2 ⁺ ,17/2 ⁺). J ^{π} : L(d,p)=(2); (3/2) from s(d,t)/s(d,p). XREF: L(2769). M_{π} L (d,p)=(2): (2/2) from s(d,t)/s(d,p) disconnect
2769.9 ^{&} 4 2830	$(21/2)^+ d$ $(3/2)^+$		1	H		Ρ	Т	J^{π} : s(d,t)/s(d,p) was used to distinguish between d3/2 and
2843 2861 <i>3</i>	$(3/2)^+$ $1/2^-$		1	Н		Q		d5/2. J^{π} : L(d,p)=(2); (3/2) from s(d,t)/s(d,p. J^{π} : L-1 transfer from Ay(θ) in ⁹⁶ Mo(pol p,d).
2895.5 ^b 6 2919	$(17/2)^+ d$ $1/2^- 3/2^-$			н	т	0		XRFF: L (2890)
2955	1/2-,3/2-		I	H	L	Q		XREF: L(2986). E(eve): Not observed in (d t) by 1970Di06
3037	3/2+		1	H		Q		XREF: Q(3027). I^{π} . Errom angular momentum transfer in (d n)
3056 3063 <i>17</i>	$\frac{1}{2^{+}}$ $\frac{1}{2^{-}}$ $\frac{3}{2^{-}}$		I	H	L			J^{π} : L(d,p)=0. I^{π} : L(d,p)=0 for 3056 discrepant
3130.1 [°] 7	$(19/2^{-})^{d}$ $(3/2)^{+}$			ц	_	0		YDEE: 0(3122)
3155	(3/2) $3/2^+ 5/2^+$			н	т	Q		J^{π} : L(d,p)=2; (3/2) from s(d,t)/s(d,p). XREF: L(3/2)00(3162)
3200 20	$(3/2^+, 5/2^+)$				L	Q		J^{π} : L(pol. p,d)=1 discrepant. XREF: Q(3226).
3260 20	$3/2^+, 5/2^+$				L	Q		J^{π} : L(pol. p,d)=4 discrepant.
3277.1 ^{<i>a</i>} 4	$(19/2^{-})^{d}$						Т	
3310? 20	$3/2^+, 5/2^+$				L	Q		
3310 10	$(1/2^+, 9/2^+)$				N			XREF: Q(3296). J^{π} : from L(³ He, α)=(4); J; L(pol. p,d)=1 discrepant.
3393 13	1/21,9/21				LN	i Q		E(level): unweighted av of 3380 <i>17</i> from (p,d),(d,t) and 3410 <i>10</i> from $({}^{3}\text{He},\alpha)$.
3403 5	3/2-					Q		J^{π} : L+1 transfer from Ay(θ).
3443 <i>17</i> 3494 <i>17</i>	1/2 ⁻ ,3/2 ⁻ 7/2 ⁺ ,9/2 ⁺				L L N	I Q		J^{π} : L=1 transfer from (d,t). XREF: N(3510)Q(3464).

⁹⁵Mo Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	X	REF			Comments
						J^{π} : L=4 transfer from (p,d) and (d,t).
3551 17	7/2+,9/2+		L	Q		XREF: Q(3521).
3625 17	$7/2^{+} 9/2^{+}$		L	0		J^* : L=4 transfer from (p,d) and (d,t). XREF: $O(3601)$
5625 17	112 ,72		-	×.		J^{π} : L=4 transfer from (p,d) and (d,t).
3672.5 <mark>&</mark> 4	$(25/2)^{+d}$	Е	0	P	Т	
3698 13				Q		
3741 16	(25/2)+			Q		
38/4.8 5	$(25/2)^{+}$			P		VDEE 0/2005)
3960 20	1/2 ,3/2		L	Q		AREF: $Q(3985)$. I_{π} : $I = 1$ transfer from (n d) and (d t)
4010 20	$1/2^{-} 3/2^{-}$		т	0		J = 1 transfer from (p,u) and (u,t). XRFF: $O(4032)$
1010 20	1/2 ,5/2		-	×.		J^{π} : L=1 transfer from (p,d) and (d,t).
4047.7 ^a 5	$(23/2^{-})^{d}$			Р	т	
4070 20	$1/2^{-}, 3/2^{-}$		L			J^{π} : L=1 transfer from (p,d) and (d,t).
4139.9 & 5	$(29/2)^{+d}$			Р	т	
4170 20	$1/2^{-}.3/2^{-}$		L	0	1	XREF: O(4154).
	-/- ,-/-					J^{π} : L=1 transfer from (p,d) and (d,t).
4240 20	$1/2^{-}, 3/2^{-}$		L	Q		XREF: Q(4229).
						J^{π} : L(pol. p,d)=2 discrepant.
4310 20	1/2-,3/2-		L	Q		XREF: Q(4299).
1250.20	1/2- 2/2-			~		J^{n} : L=1 transfer from (p,d) and (d,t).
4350 20	1/2 ,3/2		L	Q		XREF: $Q(4394)$.
4206 1 C 8	(22/2-)d		0			J : L=1 transfer from (p,u) and (u,t).
4390.1 8	$(23/2)^{-1}$		т U			π : From angular momentum transfer in (n d) (d t)
4400 23	$\frac{3}{2}$		L	0		J. From angular momentum transfer in (p,u), (u,t). I^{π} : From angular momentum transfer in (pol p d)
4450 25	$3/2^{-}$		т	Q		I^{π} : From angular momentum transfer in (pol p,q).
4486 17	$(3/2)^{-}$		-	0		J^{π} : From angular momentum transfer in (p,d), (d,t).
4500 25	3/2-		L			J^{π} : From angular momentum transfer in (p,d),(d,t).
4533	$(3/2)^{-}$			Q		J^{π} : From angular momentum transfer in (pol p,d).
4560 20	3/2+		L			J^{π} : From angular momentum transfer in (p,d),(d,t).
4630 30	$(3/2^+, 5/2^+)$		L			J ^{π} : From angular momentum transfer in (p,d),(d,t).
4740 30	1/2-,3/2-		L	Q		XREF: Q(4738).
4910 20	2/2-			0		J ^{n} : From angular momentum transfer in (d,p),(p,d) and (pol p,d).
4810 50	5/2		L	Q		AREF: $Q(4/92)$. I^{π} : From angular momentum transfer in (n d) (d t)
4852.0.5				Р		J. From angular momentum transfer in (p,u),(u,t).
4860 12	$(3/2)^{-}$			0		J^{π} : L+1 transfer from Av(θ): 2p _{3/2} for L=1.
4908 16	$(9/2)^+$			Q		J^{π} : L+1 transfer from Ay(θ); 1g _{9/2} for L=4.
4953.4 5				Р		
4954 24	9/2+			Q		J^{π} : L+1 transfer from Ay(θ); 1g _{9/2} for L=4.
5117.4 ^a 5	$(27/2)^{-d}$			Р	Т	
5362.2 ^{&} 5	$(31/2^+)^d$			Р	Т	
5451.5 7				Р		
5760.4 ^a 7	$(31/2^{-})^{d}$			Р	Т	
5896.1 [°] 9	$(27/2^{-})^{d}$		0)		
6327.9 <mark>&</mark> 7	$(35/2^+)^d$				т	
6708 6 ^{<i>a</i>} 7	$(35/2^{-})^{d}$			P	т	
7368.3 17	$1/2^+$	FG		•	1	XREF: G(7391).
	-, -					E(level), J^{π} : Energy from 2003Au03, and spin and parity is from the
						assumption of s-wave capture on an even-even target.

⁹⁵Mo Levels (continued)

$J^{\pi \ddagger}$	XREF		Comments
$(31/2^{-})^{d}$	0		
$(37/2^{-})^{d}$	Р	Т	
(39/2 ⁻) ^d		Т	
$(37/2^+)^d$		Т	
$(35/2^{-})^{d}$	0		
$(41/2^{-})^{d}$		Т	
$(45/2^{-})^{d}$		Т	
$(9/2)^+$	М]	IAR(⁹⁵ Nb g.s.).
$(1/2)^{-2}$	М]	IAR(⁹⁵ Nb 236).
$(3/2)^{-2}$	М]	IAR(⁹⁵ Nb 799).
$(5/2)^{-}$	М]	IAR(⁹⁵ Nb 1011).
$(3/2)^{-2}$	М]	IAR(⁹⁵ Nb 1219).
(5/2) ⁻ @	M]	IAR(⁹⁵ Nb 1273).
	$\frac{J^{\pi \ddagger}}{(31/2^{-})^{d}}$ $(37/2^{-})^{d}$ $(39/2^{-})^{d}$ $(37/2^{+})^{d}$ $(35/2^{-})^{d}$ $(41/2^{-})^{d}$ $(45/2^{-})^{d}$ $(9/2)^{+@}$ $(1/2)^{-@}$ $(3/2)^{-@}$ $(5/2)^{-@}$ $(5/2)^{-@}$	$\begin{array}{c c} J^{\pi^{\ddagger}} & XREF \\ \hline (31/2^{-})^d & 0 \\ (37/2^{-})^d & P \\ (39/2^{-})^d & \\ (35/2^{-})^d & 0 \\ (41/2^{-})^d & \\ (45/2^{-})^d & \\ (45/2^{-})^d & \\ (1/2)^{-@} & M \\ (1/2)^{-@} & M \\ (3/2)^{-@} & M \\ (5/2)^{-@} & M \\ (5/2)^{-@} & M \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

[†] From least-squares fit to $E\gamma$'s (including primary γ 's) for states connected by definitely placed γ 's, unless otherwise noted.

[‡] From angular momentum transfer in (p,d) or (d,t), except as noted. See $(\alpha,n\gamma)$, ⁹⁴Zr $(\alpha,3n\gamma)$ for other suggested spins and parities.

[#] From $\gamma(t)$ in $(\alpha, 3n\gamma)$, except as noted.

^(a) From angular momentum transfer in (p,d),(d,t),(³He, α) IAR and spin and parity of ⁹⁵Nb parent.

[&] Band(A): γ sequence based on g.s..

^{*a*} Band(B): γ sequence based on $11/2^-$.

^b Band(C): γ sequence based on $9/2^+$.

^c Band(b): γ sequence based on 2nd 11/2⁻ at 1332.9 keV.

^d From high-spin data, based on $\gamma\gamma(\theta)$, M γ when available, decay gamma pattern.

$\gamma(^{95}\text{Mo})$

See ⁹⁵Tc ε decay (61 d), ⁹²Zr(α ,n γ), ⁹⁴Zr(α ,3n γ), and ⁹⁴Mo(n, γ) E=thermal for unplaced gammas.

7

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ#	α	Comments
204.1163	3/2+	204.1161 [@] 17	100	0.0	5/2+	M1+E2	-0.62 7	0.052 3	α(K)=0.0449 23; α(L)=0.0058 4; α(M)=0.00103 7; α(N)=0.000154 9; α(O)=7.5×10-6 4 α(N+)=0.000161 10 B(E2)(W.u.)=21.5 11; B(M1)(W.u.)=0.00237 16 Mult.: from L1/L23 in 61-d ε decay. δ: value from the evaluation of 1981HaZY (based on L1/L23 in 61-d ε decay); sign from linear pol in Coul. ex. Other: 0.624 23 from T1/2 and B(E2)↑=0.0369 19.
520.0 765.803	(<i>1</i> /2 ⁺) 7/2 ⁺	407.54 561.67 ^c 10	0.0134 ^b 7	204.1163	(3/2 ⁺) 3/2 ⁺	(E2) ^{<i>a</i>}		0.00338 5	
		765.791 [@] 9	100 ^b	0.0	5/2+	M1+E2	-0.14 9	0.001445 21	α(K)=0.001272 18; α(L)=0.0001428 20; α(M)=2.55×10-5 4 α(O)=2.22×10-7 4; α(N+)=4.11×10-6 B(E2)(W.u.)=0.96 24; B(M1)(W.u.)=0.0109 18 Eγ: weighted average of 765.789 9 (95Tc ε decay (20.0 h)), 765.9 3 (92Zr(α,nγ), 94Zr(α,3nγ)), 765.95 14 (Coulomb excitation), 766.1 4 (65Cu(36S,αpnγ)), 765.9 1 (82Se(18O,5nγ)). Mult.: D+Q from γ(θ) in (γ,γ). M1+E2 from observation in Coul. ex. δ: from γ(θ) in (γ,γ). Other: 0.079 12 from T1/2 1/2 and B(E2)↑=0.0004 1.
786.201	1/2+	582.082 <i>3</i>	100.00 ^{&} <i>17</i>	204.1163	3/2+	M1+E2 ^{<i>d</i>}	$+0.266^{d}$ $+52-40$	0.00273 4	$\alpha(K)=0.00240 \ 4; \ \alpha(L)=0.000272 \ 4;$ $\alpha(M)=4.85 \times 10^{-5} \ 8; \ \alpha(N)=7.39 \times 10^{-6} \ 11;$ $\alpha(O)=4.19 \times 10^{-7} \ 6$

						Adopted	Levels, Gamm	as (continued)	
							γ (⁹⁵ Mo) (contin	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	$\delta^{\#}$	α	Comments
									$\begin{aligned} &\alpha(\mathrm{K}) = 0.00240 \ 4; \ \alpha(\mathrm{L}) = 0.000272 \ 4; \ \alpha(\mathrm{M}) = 4.85 \times 10^{-5} \ 8; \\ &\alpha(\mathrm{N}) = 7.39 \times 10^{-6} \ 11; \ \alpha(\mathrm{O}) = 4.19 \times 10^{-7} \ 6 \\ &\alpha(\mathrm{N}+) = 7.81 \times 10^{-6} \ 12 \\ &\mathrm{B}(\mathrm{E2})(\mathrm{W}.\mathrm{u}.) = 3.9 \ 15; \ \mathrm{B}(\mathrm{M1})(\mathrm{W}.\mathrm{u}.) = 0.0187 \ 13 \\ &\mathrm{E}_{\gamma}: \ \text{weighted average of } 582.082 \ 3 \ (^{95}\mathrm{Tc} \ \varepsilon \ \mathrm{decay} \ (61 \\ \mathrm{d})), \ 582.2 \ 3 \ (^{92}\mathrm{Zr}(\alpha, n\gamma), \ ^{94}\mathrm{Zr}(\alpha, 3n\gamma)), \ 582.38 \ 23 \\ &(\mathrm{Coulomb \ excitation}). \end{aligned}$
786.201	1/2+	786.198 4	28.90 ^{&} 15	0.0	5/2+	(E2) ^{<i>a</i>}		0.001375 20	$\alpha(K)=0.001207 \ 17; \ \alpha(L)=0.0001390 \ 20; \ \alpha(M)=2.48\times10^{-5} \ 4 \ \alpha(O)=2.06\times10^{-7} \ 3; \ \alpha(N+)=3.96\times10^{-6} \ B(E2)(W.u.)=3.79 \ 23 \ E_{v}: weighted average of 786.198 \ 4 \ (^{95}\text{Tc} \ \varepsilon \ \text{decay} \ (61$
									d)), 786.2 3 (92 Zr(α ,n γ), 94 Zr(α ,3n γ)), 786.31 20 (Coulomb excitation).
820.628	3/2+	54.88 ^{&n}	<0.004 ^{&}	765.803	7/2+	[E2]		10.39	$\alpha(K)=7.29 \ 11; \ \alpha(L)=2.56 \ 4; \ \alpha(M)=0.470 \ 7; \ \alpha(N)=0.0638 \ 9; \ \alpha(O)=0.000952 \ 14 \ \alpha(N+)=0.0648 \ 9$
		616.49 <i>3</i>	27.2 ^{&} 3	204.1163	3/2+	M1+E2 ^d	-2.00 ^d 22	0.00256 4	E _γ : observed only in ⁹⁵ Tc ε decay (61 d). $\alpha(K)=0.00224 4$; $\alpha(L)=0.000261 4$; $\alpha(M)=4.67\times10^{-5} 7$; $\alpha(N)=7.06\times10^{-6} 11$; $\alpha(O)=3.83\times10^{-7} 6$ $\alpha(N+)=7.44\times10^{-6} 11$ B(E2)(W.u.)=68 16; B(M1)(W.u.)=0.0065 19 E _γ : weighted average of 616.49 2 (⁹⁵ Tc ε decay (61 d)), 616.5 3 (⁹² Zr(α,nγ), ⁹⁴ Zr(α,3nγ)), 617.4 5 (Coulomb excitation).
		820.624 5	100.00 ^{&} 14	0.0	5/2+	M1+E2 ^e	-0.068 ^f 12	0.001238 <i>18</i>	α(K)=0.001090 16; α(L)=0.0001221 17; α(M)=2.18×10-5 3 α(O)=1.90×10-7 3; α(N+)=3.51×10-6 B(E2)(W.u.)=0.35 9; B(M1)(W.u.)=0.050 12 Eγ: weighted average of 820.624 5 (95Tc ε decay (61 d)), 820.8 3 (92Zr(α,nγ), 94Zr(α,3nγ)), 820.8 2 (Coulomb excitation). δ: sign from γ(θ) in (α,nγ) or (α,3nγ). Value from T1/2 and B(E2)↑=0.00060 15. Other: -0.15 17 from Coul. ex.
947.685	9/2+	181.88 5	0.18 ^g 5	765.803	7/2+	(M1,E2)		0.09 5	α(K)=0.08 4; α(L)=0.011 6; α(M)=0.0020 11; α(N)=0.00029 16; α(O)=1.3×10-5 6 α(N+)=0.00031 17 Εγ: weighted average of 181.88 5 (95Tc ε decay (20.0 h)), 181.5 5 (Coulomb excitation); not observed in 65Cu(36S,αpnγ). Mult.: D,E2 from comparison to RUL. Δπ=no from level scheme

 ∞

L.

	Adopted Levels, Gammas (continued)												
						γ (⁹⁵ Mc) (continued)						
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\texttt{\#}}$	α	Comments				
947.685	9/2+	421.1 <i>4</i> 947.677 <i>1</i> 9	2.0 5 100.0 ^g 10	526.6 0.0	(7/2 ⁺) 5/2 ⁺	E2(+M3) ^e	-0.01 ^{<i>f</i>} 1	0.000875 13	E _γ : observed only in ⁶⁵ Cu(³⁶ S,αpnγ). α (K)=0.000769 11; α (L)=8.75×10 ⁻⁵ 13; α (M)=1.562×10 ⁻⁵ 22 α (O)=1.319×10 ⁻⁷ 19; α (N+)=2.50×10 ⁻⁶ B(E2)(W,u)=11.3 6				
									E _γ : weighted average of 947.67 2 (95 Tc ε decay (20.0 h)), 947.9 3 (92 Zr(α,nγ), 94 Zr(α,3nγ)), 947.72 9 (Coulomb excitation), 947.3 4 (65 Cu(36 S,αpnγ)), 947.8 1 (82 Se(18 O,5nγ)).				
1039.269	1/2+	218.640 8	0.162 ^{&} 8	820.628	3/2+	M1+E2 ^h	0.73 ^h 5	0.0449 <i>15</i>	$\alpha(K)=0.0389 \ 13; \ \alpha(L)=0.00499 \ 19; \ \alpha(M)=0.00089$ 4; $\alpha(N)=0.000133 \ 5; \ \alpha(O)=6.47\times10^{-6} \ 19$ $\alpha(N+)=0.000140 \ 5$ B(E2)(W.u.)=69 \ 17; B(M1)(W.u.)=0.0062 \ 15				
		253.067 9	2.295 ^{&} 17	786.201	1/2+	M1 ^{<i>h</i>}		0.0208	E _γ : observed only in ⁹⁵ Tc ε decay (61 d). $\alpha(K)=0.0182 \ 3; \ \alpha(L)=0.00211 \ 3; \ \alpha(M)=0.000377$ $6; \ \alpha(N)=5.74\times10^{-5} \ 8; \ \alpha(O)=3.22\times10^{-6} \ 5$ $\alpha(N+)=6.06\times10^{-5} \ 9$ B(M1)(W.u.)=0.086 <i>19</i>				
			Q			,	,		E _γ : weighted average of 253.068 4 (⁹⁵ Tc ε decay (61 d)), 252.6 3 (⁹² Zr(α ,n γ), ⁹⁴ Zr(α ,3n γ)), 252.8 1 (Coulomb excitation).				
		835.149 <i>5</i>	100.0 ^{&} 8	204.1163	3/2+	M1+E2 ^{<i>a</i>}	+0.038 ^{<i>a</i>} 19	0.001191 17	$\alpha(K)=0.001049 \ 15; \ \alpha(L)=0.0001174 \ 17; \\ \alpha(M)=2.09\times10^{-5} \ 3 \\ \alpha(O)=1.83\times10^{-7} \ 3; \ \alpha(N+)=3.38\times10^{-6} \\ B(E2)(W.u.)=0.22 \ 22; \ B(M1)(W.u.)=0.104 \ 23 \\ E_{\gamma}: weighted average of 835.149 \ 5 \ (^{95}Tc \ \varepsilon \ decay)$				
		1039.264 7	10.43 ^{&} 10	0.0	5/2+	(E2) ^{<i>a</i>}		0.000708 10	(61 d)), 835.3 3 (92 Zr(α ,n γ), 94 Zr(α ,3n γ)), 834.97 17 (Coulomb excitation). α (K)=0.000623 9; α (L)=7.05×10 ⁻⁵ 10;				
									$\alpha(M)=1.25 \times 10^{-7} I8$ $\alpha(O)=1.069 \times 10^{-7} I5; \ \alpha(N+)=2.02 \times 10^{-6} 3$ B(E2)(W.u.)=5.4 <i>12</i> E _{\gamma} : weighted average of 1039.264 6 (⁹⁵ Tc ε decay (61 d)), 1039.0 3 (⁹² Zr($\alpha,n\gamma$), ⁹⁴ Zr($\alpha,3n\gamma$)).				
1056.771	5/2+	236.8 ^{<i>n</i>} 3	70 12	820.628	3/2+	M1		0.0247	1039.40 <i>10</i> (Coulomb excitation). $\alpha(K)=0.0216 \ 4; \ \alpha(L)=0.00251 \ 4; \ \alpha(M)=0.000449$ $7; \ \alpha(N)=6.82\times10^{-5} \ 10; \ \alpha(O)=3.83\times10^{-6} \ 6$ $\alpha(N+)=7.21\times10^{-5} \ 11$ E_{γ} : observed only in (⁹² Zr($\alpha,n\gamma$), ⁹⁴ Zr($\alpha,3n\gamma$)).				

Adopted Levels, Gammas (continued)											
						$\gamma(^{95})$	Mo) (continued)				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α	Comments		
1056.771	5/2+	852.61 ^{&} 4	100 & 3	204.1163	3/2+	(M1+E2)		0.001131 17	α(K)=0.000995 16; α(L)=0.0001126 17; α(M)=2.01×10-5 3 α(O)=1.72×10-7 4; α(N+)=3.23×10-6 Εγ: weighted average of 852.60 2 (95Tc ε decay (61 d)), 852.8 I (Coulomb excitation). Mult.: D+Q from γ(θ) in Coul. ex. Δπ=no from		
		1056.798 ^{&} 25	42.4 ^{&} 16	0.0	5/2+	M1+E2 ^e	+0.55 ^f +45-31	0.000706 13	the level scheme. δ : -0.02 8 or -3.6 +11-21. α (K)=0.000622 12; α (L)=6.95×10 ⁻⁵ 12; α (M)=1.239×10 ⁻⁵ 21 α (O)=1.080×10 ⁻⁷ 24; α (N+)=2.00×10 ⁻⁶ B(E2)(W.u.)=39 8; B(M1)(W.u.)=0.014 +24-14		
1073.727	7/2+	125.80 <i>21</i>	1.10 <i>15</i>	947.685	9/2+	(M1)		0.1331	E _γ : weighted average of 1056.70 25 (⁹⁵ Tc ε decay (20.0 h)), 1056.79 2 (⁹⁵ Tc ε decay (61 d)), 1057.0 3 (⁹² Zr(α,nγ), ⁹⁴ Zr(α,3nγ)), 1057.0 <i>1</i> (Coulomb excitation). $\alpha(K)=0.1165 \ 18; \ \alpha(L)=0.01376 \ 22; \ \alpha(M)=0.00247 \ 4; \ \alpha(N)=0.000374 \ 6; \ \alpha(O)=2.07\times10^{-5} \ 4 \ \alpha(N+)=0.000395 \ 7 \ B(M1)(W.u.)=0.25 \ 11 \ E_{\gamma}:$ weighted average of 125.8 3 (⁹⁵ Tc ε decay		
		252.6 ⁱⁿ 3	32 ^{<i>i</i>} 32	820.628	3/2+	[E2]		0.0436	 (20.0 h)), 125.8 <i>3</i> (Coulomb excitation). Mult.: d from comparison to RUL. Δπ=no from level scheme. I_γ: from Coulomb Excitation. α(K)=0.0376 6; α(L)=0.00500 8; α(M)=0.000898 14; α(N)=0.0001324 20; α(O)=6.01×10⁻⁶ 9 α(N+)=0.0001384 21 		
		307.929 ^c 20	0.93 ^c 3	765.803	7/2+	(M1,E2)		0.017 5	E _γ : observed only in Coulomb Excitation. $\alpha(K)=0.015 \ 4; \ \alpha(L)=0.0019 \ 6; \ \alpha(M)=0.00033 \ 11;$ $\alpha(N)=5.0\times10^{-5} \ 16; \ \alpha(O)=2.5\times10^{-6} \ 6$		
		869.60 [°] 3	8.47 ^c 20	204.1163	3/2+	[E2]		0.001073 <i>15</i>	$ α(N+)=5.3×10^{-3} 16 $ E _γ : weighted average of 307.93 2 (⁹⁵ Tc ε decay (20.0 h)), 307.8 3 (Coulomb excitation). Mult.: d,E2 from comparison to RUL. Δπ=no from level scheme. α(K)=0.000942 14; α(L)=0.0001078 15; $α(M)=1.92×10^{-5} 3$ $α(O)=1.613×10^{-7} 23; α(N+)=3.08×10^{-6}$		

From ENSDF

⁹⁵₄₂Mo₅₃-10

L.

						γ ⁽⁹⁵ Mo) (co	ontinued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ#	α	Comments
1073.727	7/2+	1073.72 ^c 4	100.0 ^c 10	0.0	5/2+	M1+E2 ^e	-0.72 ^f 11	0.000679 <i>10</i>	B(E2)(W.u.)=8 3 E _γ : weighted average of 869.60 3 (⁹⁵ Tc ε decay (20.0 h)), 870.0 5 (Coulomb excitation). α (K)=0.000598 9; α (L)=6.69×10 ⁻⁵ 10; α (M)=1.193×10 ⁻⁵ 17 α (O)=1.037×10 ⁻⁷ 16; α (N+)=1.92×10 ⁻⁶ 3 B(E2)(W.u.)=10.7 8; B(M1)(W.u.)=0.024 8 E _γ : weighted average of 1073.71 2 (⁹⁵ Tc ε decay (20.0 h)), 1073.9 3 (⁹² Zr(α ,n γ)), ⁹⁴ Zr(α ,3n γ)), 1074.0 1 (Coulomb excitation).
1302.31	1/2+	245.83 ^{&} 9 263 ^{&n} 515.6 ^{&n} 4 1098 ^{&n} 1302 ^{&n}	$100^{\&} 25 \\ \leq 7^{\&} \\ 18^{\&} 18 \\ \leq 1.1^{\&} \\ \leq 1.1^{\&} \\ \end{cases}$	1056.771 1039.269 786.201 204.1163 0.0	5/2 ⁺ 1/2 ⁺ 1/2 ⁺ 3/2 ⁺ 5/2 ⁺				
1318.23	(3/2 ⁺ ,5/2 ⁺)	$ \begin{array}{c} 244.1^n \ 3\\ 261.3^n \ 3\\ 552.6^{mn} \ 3 \end{array} $	49 7 100 <i>11</i> 87 ^m 9	1073.727 1056.771 765.803	7/2 ⁺ 5/2 ⁺ 7/2 ⁺	D,E2 D,E2 D,E2			
1332.9	(11/2 ⁻)	385.2 4	5.0 10	947.685	9/2+				alternative placement of 385.2 keV γ -ray from 1937.4 keV, suggested in ${}^{16}O({}^{82}Se,3n\gamma)$.
1369.75	(3/2)	1165.5 ⁱ 3 1369.76 ^{&} 13	56 ⁱ 6 100 ⁱ 10	204.1163 0.0	3/2 ⁺ 5/2 ⁺				E _γ : from (⁹² Zr(α,nγ), ⁹⁴ Zr(α,3nγ). E _γ : weighted average of 1369.75 <i>15</i> (⁹⁵ Tc ε decay (61 d)), 1369.8 <i>3</i> (⁹² Zr(α,nγ), ⁹⁴ Zr(α,3nγ).
1376.0? 1425.992	3/2 ⁺ (5/2) ⁺	1376.0 <i>20</i> 640.0 ^{<i>i</i>} <i>3</i>	19.8 ⁱ 18	0.0 786.201	5/2 ⁺ 1/2 ⁺	(E2) ^{<i>a</i>}		0.00235 4	E _γ : from Coulomb excitation. $ \alpha(K)=0.00206 3; \alpha(L)=0.000241 4; $ $ \alpha(M)=4.31\times10^{-5} 6; \alpha(N)=6.51\times10^{-6} 10; $ $ \alpha(O)=3.50\times10^{-7} 5 $ $ \alpha(N+)=6.86\times10^{-6} 10 $ E _γ : observed only in (⁹² Zr(α,nγ), ⁹⁴ Zr(α,3nγ)). I _γ : from intensity ratio at θ=80° and Eα=14 MeV
		1222.00 ^{&} 3	100.0 ^{&} <i>17</i>	204.1163	3/2+	D,Q			w.r.t. to 1222 keV γ -ray in $(\alpha, n\gamma)$. E_{γ} : weighted average of 1221.90 <i>15</i> (95 Tc ε decay (20.0 h)), 1222.00 <i>3</i> (95 Tc ε decay (61 d)), 1222.1 <i>3</i> (92 Zr($\alpha, n\gamma$), 94 Zr($\alpha, 3n\gamma$)). Mult.: from comparison to RUL and α (K)exp in 61-d ε decay.
		1426.11 ^{&} 15	0.30 ^{&} 23	0.0	5/2+				E_{γ} : observed only in ⁹⁵ Tc ε decay (61 d).

From ENSDF

Т

$\gamma(^{95}Mo)$	(continued)
/(110)	(continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	α	Comments
1440.02?	(7/2 ⁺ ,9/2,11/2)	674.1 ^{mn} 3 1235.8 ⁱⁿ 3 1440.5 ⁱⁿ 3	79 ^{mi} 9 100 ⁱ 10 46 ⁱ 6	765.803 204.1163 0.0	7/2 ⁺ 3/2 ⁺ 5/2 ⁺	D,Q		
1540.801	11/2+	$101.5^{n} \ 3$ $467.3^{n} \ 3$	3.1 <i>4</i> 9.2 <i>10</i>	1440.02? 1073.727	(7/2 ⁺ ,9/2,11/2) 7/2 ⁺	D,E2 (E2) ^{<i>a</i>}	0.00581 9	E _γ ,I _γ : from ⁹² Zr(α ,nγ), ⁹⁴ Zr(α ,3nγ) only. α (K)=0.00507 8; α (L)=0.000613 9; α (M)=0.0001096 16; α (N)=1.644×10 ⁻⁵ 24 α (O)=8.49×10 ⁻⁷ 12; α (N+)=1.729×10 ⁻⁵ 25 E _γ ,I _γ : from ⁹² Zr(α ,nγ), ⁹⁴ Zr(α ,3nγ).
		593.15 ^c 5	100 12	947.685	9/2+	(M1+E2) ^j	0.00274 <i>17</i>	$\begin{aligned} &\alpha(\mathbf{K})=0.00241 \ 14; \ \alpha(\mathbf{L})=0.000278 \ 22; \\ &\alpha(\mathbf{M})=5.0\times10^{-5} \ 4; \ \alpha(\mathbf{N})=7.5\times10^{-6} \ 6; \\ &\alpha(\mathbf{O})=4.14\times10^{-7} \ 17 \\ &\alpha(\mathbf{N}+)=7.9\times10^{-6} \ 6 \\ \mathbf{E}_{\gamma}: \ \text{weighted average of } 593.16 \ 6 \ (^{95}\text{Tc} \ \varepsilon \\ \ decay \ (20.0 \ h)), \ 593.3 \ 3 \ (^{92}\text{Zr}(\alpha,n\gamma), \\ &^{94}\text{Zr}(\alpha,3n\gamma)), \ 593.2 \ 4 \ (^{65}\text{Cu}(^{36}\text{S},\alpha\text{pn}\gamma)), \\ &593.1 \ 1 \ (^{82}\text{Se}(^{18}\text{O},5n\gamma)), \ 593.2 \ 5 \\ &(^{16}\text{O}(^{82}\text{Se},3n\gamma)). \\ \mathbf{I}_{\gamma}: \ \text{from} \ ^{92}\text{Zr}(\alpha,n\gamma), \ ^{94}\text{Zr}(\alpha,3n\gamma). \end{aligned}$
		774.989 ^c 11	78 8	765.803	7/2+	E2 ^k	0.001425 20	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001251 \ I8; \ \alpha(\mathbf{L}) = 0.0001442 \ 21; \\ &\alpha(\mathbf{M}) = 2.57 \times 10^{-5} \ 4 \\ &\alpha(\mathbf{O}) = 2.14 \times 10^{-7} \ 3; \ \alpha(\mathbf{N}+) = 4.11 \times 10^{-6} \\ & \mathbf{E}_{\gamma}: \text{ weighted average of } 774.99 \ I \ (^{95}\text{Tc} \ \varepsilon \\ & \text{decay } (20.0 \ h)), \ 775.2 \ 3 \ (^{92}\text{Zr}(\alpha, n\gamma), \\ & ^{94}\text{Zr}(\alpha, 3n\gamma)), \ 774.4 \ 4 \ (^{65}\text{Cu}(^{36}\text{S}, \alpha \text{pn}\gamma)), \\ & 774.9 \ I \ (^{82}\text{Se}(^{18}\text{O}, 5n\gamma)), \ 774.4 \ 5 \\ & (^{16}\text{O}(^{82}\text{Se}, 3n\gamma)). \\ & \mathbf{I}_{\gamma}: \ \text{from} \ ^{92}\text{Zr}(\alpha, n\gamma), \ ^{94}\text{Zr}(\alpha, 3n\gamma). \end{aligned}$
1551.772	(9/2)+	111.3 ⁱⁿ 3 126.03 ^{cn} 4	$14.6^{i} 21$ $3.4^{c} 3$	1440.02? 1425.992	(7/2 ⁺ ,9/2,11/2) (5/2) ⁺	D,E2 (E2) ^{<i>l</i>}	0.522	$\alpha(K)=0.433 \ 6; \ \alpha(L)=0.0734 \ 11;$ $\alpha(M)=0.01328 \ 19; \ \alpha(N)=0.00190 \ 3;$ $\alpha(O)=6.40\times10^{-5} \ 9$ $\alpha(N+)=0.00196 \ 3$ E_{γ} : discrepant with 125.60 4 from the level scheme.
		477.7 ^c 4 495.16 ^{cn}	4.3 ^c 16 ≤0.5 ^c	1073.727 1056.771	7/2 ⁺ 5/2 ⁺	D,Q		
		604.02 ^{<i>c</i>} 6	100 [°] 3	947.685	9/2+	(M1+E2) ^j	0.00262 15	α (K)=0.00230 <i>12</i> ; α (L)=0.000265 <i>20</i> ;

				A	dopted Level	ls, Gamma	s (continued)	
					γ (⁹⁵ N	Io) (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α	Comments
								$\begin{array}{l} \alpha(\mathrm{M}) = 4.7 \times 10^{-5} \ 4; \ \alpha(\mathrm{N}) = 7.2 \times 10^{-6} \ 5; \ \alpha(\mathrm{O}) = 3.96 \times 10^{-7} \\ 15 \\ \alpha(\mathrm{N}+) = 7.6 \times 10^{-6} \ 5 \\ \mathrm{B}(\mathrm{M}1)(\mathrm{W.u.}) \leq 0.58 \ 4 \\ \mathrm{E}_{\gamma}: \ \text{weighted average of } 604.04 \ 2 \ (^{95}\mathrm{Tc} \ \varepsilon \ \mathrm{decay} \ (20.0 \\ \mathrm{h})), \ 604.0 \ 3 \ (^{92}\mathrm{Zr}(\alpha,\mathrm{n}\gamma), \ ^{94}\mathrm{Zr}(\alpha,3\mathrm{n}\gamma)), \ 603.5 \ 1 \\ (^{82}\mathrm{Se}(^{18}\mathrm{O},5\mathrm{n}\gamma)), \ 604.0 \ 5 \ (^{16}\mathrm{O}(^{82}\mathrm{Se},3\mathrm{n}\gamma):\mathrm{xundl-6})). \\ \mathrm{I}_{\gamma}: \ \text{weighted average of } 100 \ 3 \ (^{95}\mathrm{Tc} \ \varepsilon \ \mathrm{decay} \ (20.0 \ \mathrm{h})), \ 100 \ 10 \ (^{92}\mathrm{Zr}(\alpha,\mathrm{n}\gamma), \ ^{94}\mathrm{Zr}(\alpha,3\mathrm{n}\gamma)), \ 100 \ 6 \\ (^{82}\mathrm{Se}(^{18}\mathrm{O},5\mathrm{n}\gamma)). \end{array}$
1551.772	(9/2)+	785.929 ^c 20	48 ^c 3	765.803	7/2+	D+Q		E _γ : weighted average of 785.93 2 (⁹⁵ Tc ε decay (20.0 h)), 785.9 3 (⁹² Zr(α,nγ), ⁹⁴ Zr(α,3nγ)), 785.6 4 (⁸² Se(¹⁸ O,5nγ)), 785.9 5 (¹⁶ O(⁸² Se,3nγ)). I _γ : weighted average of 48 3 (⁹⁵ Tc ε decay (20.0 h)), 46 5 (⁹² Zr(α,nγ), ⁹⁴ Zr(α,3nγ)). Mult.,δ: from $\gamma(\theta)$ in 20-h ε decay.
		1551.71 [°] 5	6.7 ^c 6	0.0	5/2+	[E2]	0.000408 6	$\alpha(K)=0.000269 \ 4; \ \alpha(L)=2.99\times10^{-5} \ 5; \ \alpha(M)=5.32\times10^{-6} \ 8; \\ \alpha(N)=8.11\times10^{-7} \ 12 \\ \alpha(O)=4.62\times10^{-8} \ 7; \ \alpha(N+)=0.0001041 \ 15 \\ B(E2)\downarrow\leq 0.94 \ 13 \\ E_{\gamma},I_{\gamma}: \ from \ ^{95}Tc \ \varepsilon \ decay \ (20.0 \ h).$
1620.26	3/2+	$318.27^{\&n}$ 10 $563.48^{\&}$ 6 $799.60^{\&}$ 15 $1416.09^{\&}$ 8 $1620.20^{\&}$ 4	$2.7^{\&} 10$ $25^{\&} 4$ $3.8^{\&} 14$ $4.81^{\&} 17$ $100^{\&} 5$	1302.31 1056.771 820.628 204.1163	1/2 ⁺ 5/2 ⁺ 3/2 ⁺ 3/2 ⁺ 5/2 ⁺			
1645.1?	7/2 ⁽⁺⁾	$ \begin{array}{r} 1626.20 \\ 1441.0^{cn} \\ 9 \\ 1645.0^{cn} \\ 9 \end{array} $	$100^{\circ} 57$ $86^{\circ} 43$	204.1163 0.0	3/2 ⁺ 5/2 ⁺			
1660.3?	(≤5/2)	1660.27 ^{&n} 25	100 ^{&}	0.0	5/2+			
1683.0?	$7/2,9/2^{(+)}$	1683 ^{ch}	100^{c}	0.0	5/2+	DEA		
1742.90?	(9/2)	$201.9^{in} 3$ $424.3^{in} 3$ $977.6^{in} 3$	$17.0^{i} 22$ $100^{i} 11$	1540.801 1318.23 765.803	$11/2^+$ (3/2 ⁺ ,5/2 ⁺) 7/2 ⁺	D,E2 D,Q D,Q		
1796.30?		255.6 ⁱⁿ 3 974.8 ⁱⁿ 3	$88^{i} 13$ $100^{i} 13$	1540.801 820.628	11/2 ⁺ 3/2 ⁺	D,E2 D,Q		
1808.02?	$(7/2^+)$	266.9 ⁱⁿ 3	30 ^{<i>i</i>} 3	1540.801	11/2+	(E2) ^{<i>l</i>}	0.0360	α (K)=0.0311 5; α (L)=0.00410 6; α (M)=0.000734 11; α (N)=0.0001085 16; α (O)=5.00×10 ⁻⁶ 8 α (N+)=0.0001135 17

⁹⁵₄₂Mo₅₃-13

					Ado	opted Levels,	Gammas (conti	nued)
						γ (⁹⁵ Mo)	(continued)	
E _i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α	Comments
1808.02?	$(7/2^+)$	987.7 ⁱⁿ 3	100 ^{<i>i</i>} 11	820.628	3/2+	(E2) ^{<i>a</i>}	0.000795 12	$\alpha(K)=0.000699 \ 10; \ \alpha(L)=7.93\times10^{-5} \ 12; \ \alpha(M)=1.415\times10^{-5} \ 20 \ \alpha(O)=1.199\times10^{-7} \ 17; \ \alpha(N+)=2.27\times10^{-6}$
1888.54	$(9/2)^+$	337.3 ⁱⁿ 3	2.9 ⁱ 3	1551.772	$(9/2)^+$	D,E2		
1937.47	$11/2^{-}$	140.4 ⁱⁿ 3	12.3 ⁱ 15	1796.30?		D,E2		
		194.5 ⁱⁿ 3	7.6 ⁱ 10	1742.90?	(9/2)	D,E2		
		385.82 ⁿ 9	≤100	1551.772	(9/2)+	(E1) ^k	0.00283 4	$\alpha(K)=0.00249 \ 4; \ \alpha(L)=0.000280 \ 4; \ \alpha(M)=4.98\times10^{-5} \ 7; \\ \alpha(N)=7.55\times10^{-6} \ 11; \ \alpha(O)=4.17\times10^{-7} \ 6 \\ \alpha(N+)=7.96\times10^{-6} \ 12 $
								E _γ : weighted average of 385.9 3 (92 Zr(α,nγ), 94 Zr(α,3nγ)), 385.8 1 (82 Se(18 O,5nγ)), 386.0 5 (16 O(82 Se,3nγ)). I _γ : from 92 Zr(α,nγ), 94 Zr(α,3nγ). alternative placement of 385.2 keV γ-ray from 1937.4 keV, suggested in 65 Cu(36 S,αpnγ).
		396.46 17	7.1 9	1540.801	11/2+	D,Q		E _γ : weighted average of 396.6 3 (92 Zr(α,nγ), 94 Zr(α,3nγ)), 396.4 2 (82 Se(18 O,5nγ). L: from 92 Zr(α,nγ) 94 Zr(α 3nγ)
		990.4 <i>3</i>	<52	947.685	9/2+	(E1+M2)	0.0011 9	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0010 \ 8; \ \alpha(\mathbf{L}) = 0.00012 \ 9; \ \alpha(\mathbf{M}) = 2.1 \times 10^{-5} \ 15; \\ &\alpha(\mathbf{N}) = 3.1 \times 10^{-6} \ 23; \ \alpha(\mathbf{O}) = 1.8 \times 10^{-7} \ 13 \\ &\alpha(\mathbf{N}+) = 3.3 \times 10^{-6} \ 24 \\ &\mathbf{E}_{\gamma}: \text{ weighted average of } 990.7 \ 3 \ (^{92}\mathbf{Zr}(\alpha, \mathbf{n}\gamma), \ ^{94}\mathbf{Zr}(\alpha, 3\mathbf{n}\gamma)), \end{aligned}$
								990.1 3 (82 Se(18 O,5n γ)).
								I _{γ} : from ⁹² Zr(α ,n γ), ⁹⁴ Zr(α ,3n γ).
								Mult.: (D+Q) from $\gamma(\theta)$ in $(\alpha, n\gamma)$ or $(\alpha, 3n\gamma)$. $\Delta \pi$ =yes from the level scheme.
2058.51	(13/2 ⁺)	170.5 ⁱⁿ 3	6.8 ¹ 11	1888.54	(9/2)+	(E2) ^{<i>l</i>}	0.175	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1487 \ 23; \ \alpha(\mathbf{L}) = 0.0221 \ 4; \ \alpha(\mathbf{M}) = 0.00398 \ 7; \\ &\alpha(\mathbf{N}) = 0.000578 \ 9; \ \alpha(\mathbf{O}) = 2.28 \times 10^{-5} \ 4 \\ &\alpha(\mathbf{N}+) = 0.000600 \ 10 \end{aligned}$
		517.4 ⁱⁿ 3	6.8 ⁱ 11	1540.801	$11/2^{+}$	D,Q		
		1110.75 10	100 10	947.685	9/2+	(E2) <i>j</i>	0.000611 9	$\alpha(K)=0.000537 \ 8; \ \alpha(L)=6.05\times10^{-5} \ 9; \ \alpha(M)=1.079\times10^{-5} \ 16; \ \alpha(O)=9.22\times10^{-8} \ 13$
								$\alpha(N+)=2.61\times10^{-6} 4$ E_{γ} : weighted average of 1111.2 3 ($^{92}Zr(\alpha,n\gamma)$, $^{94}Zr(\alpha,3n\gamma)$), 1110.7 1 ($^{82}Se(^{18}O,5n\gamma)$), 1110.8 5 ($^{16}O(^{82}Se,3n\gamma)$).
2092 9	$(15/2^{-})$	760.0.4	5010	1332.0	$(11/2^{-})$	F2		I_{γ} : Irom ($\mathcal{Z}r(\alpha, n\gamma)$, $\mathcal{L}r(\alpha, 5n\gamma)$). Mult : from directional correlation ratio
2219.2	$(13/2)^+$	667.4 4	100	1551.772	$(9/2)^+$	E2		Mult.: from directional correlation ratio.
2232.27	$(15/2)^+$	173.78 9	7.80 22	2058.51	$(13/2^+)$	(M1+E2) ^j	0.11 6	$\alpha(K)=0.095; \alpha(L)=0.0138; \alpha(M)=0.002414; \alpha(N)=0.00035$

Т

					Ad	lopted Levels	, Gammas (co	ontinued)
						γ (⁹⁵ Mo	b) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α	Comments
								$\begin{array}{l} 19; \ \alpha(\mathrm{O})=1.5\times10^{-5} \ 7\\ \alpha(\mathrm{N}+)=0.00036 \ 20\\ \mathrm{E}_{\gamma}: \ \text{weighted average of } 173.5 \ 3 \ (^{92}\mathrm{Zr}(\alpha,\mathrm{n}\gamma), \ ^{94}\mathrm{Zr}(\alpha,3\mathrm{n}\gamma)), \ 173.8\\ I \ (^{82}\mathrm{Se}(^{18}\mathrm{O},5\mathrm{n}\gamma)), \ 174.0 \ 5 \ (^{16}\mathrm{O}(^{82}\mathrm{Se},3\mathrm{n}\gamma):\mathrm{xundl-6}).\\ \mathrm{I}_{\gamma}: \ \text{weighted average of } 7.9 \ 8 \ (^{92}\mathrm{Zr}(\alpha,\mathrm{n}\gamma), \ ^{94}\mathrm{Zr}(\alpha,3\mathrm{n}\gamma)), \ 7.79 \ 23\\ (^{82}\mathrm{Se}(^{18}\mathrm{O},5\mathrm{n}\gamma)). \end{array}$
2232.27	(15/2)+	691.45 9	100 3	1540.801	11/2+	E2 ^k	0.00191 3	$\begin{split} &\alpha(\mathbf{K}) = 0.001677\ 24;\ \alpha(\mathbf{L}) = 0.000195\ 3;\ \alpha(\mathbf{M}) = 3.48 \times 10^{-5}\ 5;\\ &\alpha(\mathbf{N}) = 5.27 \times 10^{-6}\ 8;\ \alpha(\mathbf{O}) = 2.86 \times 10^{-7}\ 4\\ &\alpha(\mathbf{N}+) = 5.55 \times 10^{-6}\ 8\\ &\mathbf{E}_{\gamma}: \text{ weighted average of } 691.7\ 3\ (^{92}\mathbf{Zr}(\alpha,\mathbf{n}\gamma),\ ^{94}\mathbf{Zr}(\alpha,3\mathbf{n}\gamma)),\ 691.7\\ &4\ (^{65}\mathbf{Cu}(^{36}\mathbf{S},\alpha\mathbf{pn}\gamma)),\ 691.4\ 1\ (^{82}\mathbf{Se}(^{18}\mathbf{O},5\mathbf{n}\gamma)),\ 691.5\ 5\\ &(^{16}\mathbf{O}(^{82}\mathbf{Se},3\mathbf{n}\gamma)).\\ &\mathbf{I}_{\gamma}: \text{ weighted average of } 100\ 11\ (^{92}\mathbf{Zr}(\alpha,\mathbf{n}\gamma),\ ^{94}\mathbf{Zr}(\alpha,3\mathbf{n}\gamma)),\ 100\ 3\\ &(^{82}\mathbf{Se}(^{18}\mathbf{O},5\mathbf{n}\gamma)).\\ &\mathbf{Mult.: stretched } \mathbf{Q}. \end{split}$
2580.08	(17/2)+	347.89 9	100.0 4	2232.27	(15/2)+	M1(+E2) ^k	0.012 3	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0105 \ 24; \ \alpha(\mathbf{L}) = 0.0013 \ 4; \ \alpha(\mathbf{M}) = 0.00023 \ 6; \ \alpha(\mathbf{N}) = 3.4 \times 10^{-5} \\ &9; \ \alpha(\mathbf{O}) = 1.8 \times 10^{-6} \ 4 \\ &\alpha(\mathbf{N}+) = 3.6 \times 10^{-5} \ 9 \\ &\mathbf{E}_{\gamma}: \text{ weighted average of } 347.8 \ 3 \ (^{92}\mathbf{Zr}(\alpha,\mathbf{n}\gamma), \ ^{94}\mathbf{Zr}(\alpha,3\mathbf{n}\gamma)), \ 347.8 \\ &4 \ (^{65}\mathbf{Cu}(^{36}\mathbf{S},\alpha\mathbf{pn}\gamma)), \ 347.9 \ 1 \ (^{82}\mathbf{Se}(^{18}\mathbf{O},5\mathbf{n}\gamma)), \ 348.0 \ 5 \\ &(^{16}\mathbf{O}(^{82}\mathbf{Se},3\mathbf{n}\gamma):\text{xundl-6}). \\ &\mathbf{I}_{\gamma}: \text{ weighted average of } 100 \ 11 \ (^{92}\mathbf{Zr}(\alpha,\mathbf{n}\gamma), \ ^{94}\mathbf{Zr}(\alpha,3\mathbf{n}\gamma)), \ 100.0 \ 4 \\ &(^{82}\mathbf{Se}(^{18}\mathbf{O},5\mathbf{n}\gamma)) \end{aligned}$
		521.57 16	3.8 15	2058.51	(13/2+)	Q		E _{γ} : weighted average of 521.8 <i>3</i> (92 Zr(α ,n γ), 94 Zr(α ,3n γ)), 521.4 <i>2</i> (82 Se(18 O,5n γ)), 522.0 <i>5</i> (16 O(82 Se,3n γ)). I _{γ} : weighted average of 3.2 <i>3</i> (92 Zr(α ,n γ), 94 Zr(α ,3n γ)), 7.9 8 (82 Se(18 O,5n γ))
2611.14	(15/2 ⁻)	552.45 ^m 16	20 ^m 6	2058.51	(13/2+)	D,Q		E _{γ} : weighted average of 552.6 <i>3</i> (⁹² Zr(α ,n γ), ⁹⁴ Zr(α ,3n γ)), 552.3 <i>2</i> (⁸² Se(¹⁸ O,5n γ)), 553.0 <i>5</i> (¹⁶ O(⁸² Se,3n γ)). I _{γ} : weighted average of 28 <i>3</i> (⁹² Zr(α ,n γ), ⁹⁴ Zr(α ,3n γ)), 15.8 <i>23</i> (⁸² Se(¹⁸ O,5n γ)
		673.88 ^m 20	100 ^m 10	1937.47	11/2-	Q		E _{γ} : weighted average of 674.1 <i>3</i> (⁹² Zr(α ,n γ), ⁹⁴ Zr(α ,3n γ)), 673.7 <i>3</i> (⁸² Se(¹⁸ O,5n γ)), 673.8 <i>5</i> (¹⁶ O(⁸² Se,3n γ)). I _{γ} : weighted average of 100 <i>10</i> (⁹² Zr(α ,n γ), ⁹⁴ Zr(α ,3n γ)), 100 <i>5</i> (⁸² Se(¹⁸ O,5n γ)).
		1070.5 ⁿ 3	8.1 <i>13</i>	1540.801	11/2+			E_{γ} : observed only in (⁹² Zr(α,nγ), ⁹⁴ Zr(α,3nγ)). I_{γ} : from (⁹² Zr(α,nγ), ⁹⁴ Zr(α,3nγ)).

⁹⁵₄₂Mo₅₃-15

L.

$\gamma(^{95}Mo)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α	Comments
2618.08	$(19/2)^+$	38.1 1	100.0 8	2580.08	$(17/2)^+$			E_{γ} : suggested but not observed in ⁸² Se(¹⁸ O,5n γ).
								I_{γ} : estimated on the basis of relative intensity data of 2004Ch18.
		385.63 13	0.84 8	2232.27	$(15/2)^+$	E2	0.00723 11	$\alpha(K)=0.00635 \ 9; \ \alpha(L)=0.000725 \ 11; \ \alpha(M)=0.0001297 \ 19;$
								$\alpha(N) = 1.97 \times 10^{-5} 3$
								$\alpha(O)=1.118\times10^{-6}$ 16; $\alpha(N+)=2.09\times10^{-5}$ 3
								E_{γ} : weighted average of 385.6 <i>I</i> (62 Se(10 O,5n γ)), 386.3 5
2732-1	10/2+	152.0.8	100	2580.08	$(17/2)^+$	$M1 \pm (F2)$	0 17 9	$(^{10}\text{U}(^{3}\text{Se},3n\gamma)).$ $\alpha(\text{K})=0.14.8; \alpha(\text{I})=0.021.13; \alpha(\text{M})=0.0038.24; \alpha(\text{N})=0.0005.4;$
2752.1	19/2	152.0 0	100	2500.00	(17/2)	WII+(L2)	0.17 9	$\alpha(\Omega)=23\times10^{-5}$ 11
								$\alpha(0)=2.5\times10^{-11}$ $\alpha(N+)=0.0006$ 4
								E_{γ} : weighted average of 151.4 3 ($^{92}Zr(\alpha,n\gamma)$, $^{94}Zr(\alpha,3n\gamma)$), 153.1 4
								$(^{65}\mathrm{Cu}(^{36}\mathrm{S},\alpha\mathrm{pn}\gamma)).$
2769.9	$(21/2)^+$	151.8 4	100	2618.08	$(19/2)^+$	M1	0.0797 14	α (K)=0.0698 <i>12</i> ; α (L)=0.00820 <i>14</i> ; α (M)=0.001469 <i>25</i> ;
								$\alpha(N) = 0.000223.4$ $\alpha(O) = 1.241 \times 10^{-5}.241 \alpha(NL) = 0.000225.4$
								$u(0) = 1.241 \times 10^{-21}, u(11+) = 0.000255.4$ E : weighted average of 151.0 5 (82 Se(18 O 5ma)) 151.7 5
								$({}^{16}O({}^{82}Se_{3n\gamma})))$ (1917) 5 (${}^{16}O({}^{82}Se_{3n\gamma}))$
								Mult.: from DCO in 82 Se(18 O.5n γ).
2895.5	$(17/2)^+$	676.3 4	100	2219.2	$(13/2)^+$	E2		
3130.1	$(19/2^{-})$	1037.2 4	5.0 10	2092.9	$(15/2^{-})$	E2		γ ray not observed in ${}^{16}O({}^{82}Se,3n\gamma)$.
0077.1	(10/2-)		100	0(11.14	(15/0-)			Mult.: from directional correlation ratio.
3277.1	$(19/2^{-})$	666.0 5	100	2611.14	$(15/2^{-})$	50	0.000001.14	(K) 0.0009(0.10 (J.) 0.94.10=5.14 (M) 1.75(10=5.25
3072.3	$(25/2)^{+}$	902.0 3	100	2709.9	$(21/2)^{+}$	E2	0.000981 14	$\alpha(\mathbf{K}) = 0.000802 \ 12; \ \alpha(\mathbf{L}) = 9.84 \times 10^{-7} \ 14; \ \alpha(\mathbf{M}) = 1.756 \times 10^{-7} \ 25$ $\alpha(\mathbf{O}) = 1.477 \times 10^{-7} \ 21; \ \alpha(\mathbf{N}+) = 2.81 \times 10^{-6}$
								E_{α} : weighted average of 902.7 3 (⁹² Zr(α .ny), ⁹⁴ Zr(α .3ny)), 904.8 4
								$(^{65}Cu(^{36}S.\alpha pn\gamma)).902.5 I (^{82}Se(^{18}O.5n\gamma)).902.5 5$
								$({}^{16}O({}^{82}Se,3n\gamma)).$
3874.8	$(25/2)^+$	202.3 1	12.8 19	3672.5	$(25/2)^+$	M1	0.0372	$\alpha(K)=0.0326\ 5;\ \alpha(L)=0.00380\ 6;\ \alpha(M)=0.000680\ 10;$
								α (N)=0.0001033 15; α (O)=5.78×10 ⁻⁶ 9
4047.7	$(22/2^{-})$	770 6 5	100	2077 1	$(10/2^{-})$			$\alpha(N+)=0.0001090\ 16$
4047.7	$(23/2)^+$	//0.0 J /67 /1 /0	100	3672.5	(19/2)	F2	0.00581.0	$\alpha(\mathbf{K}) = 0.00507.8; \alpha(\mathbf{I}) = 0.000612.9; \alpha(\mathbf{M}) = 0.0001095.16;$
+139.9	(29/2)	-107117	100	5072.5	(23/2)	1.12	0.00301 9	$\alpha(N)=1.643 \times 10^{-5} 24$
								$\alpha(O)=8.49\times10^{-7}$ 12; $\alpha(N+)=1.728\times10^{-5}$ 25
								E_{γ} : weighted average of 467.4 2 (⁸² Se(¹⁸ O,5n γ)), 467.5 5
								$({}^{16}O({}^{82}Se,3n\gamma):xundl-6).$
4396.1	$(23/2^{-})$	1266.0 4	4.0 10	3130.1	$(19/2^{-})$			
4852.0		977.2 Z 1078.6 J	100	3874.8 3874.8	$(25/2)^{+}$ $(25/2)^{+}$			

16

⁹⁵₄₂Mo₅₃-16

					<u>)</u>	y(⁹⁵ Mo) (c	ontinued)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.‡	α	Comments
5117.4	(27/2)-	1069.7 4	79 16	4047.7	(23/2 ⁻)			E _γ : weighted average of 1069.9 5 (82 Se(18 O,5nγ)), 1069.5 5 (16 O(82 Se,3nγ)).
		1444.93 <i>19</i>	100 <i>16</i>	3672.5	(25/2)+	E1	0.000425 6	$\alpha(K)=0.000327 5; \alpha(L)=3.62\times10^{-5} 5; \alpha(M)=6.46\times10^{-6} 9; \alpha(N)=9.86\times10^{-7} 14$ $\alpha(O)=5.69\times10^{-8} 8; \alpha(N+)=5.49\times10^{-5} 8$ E _y : weighted average of 1444.9 2 (82 Se(18 O,5n γ)), 1445.1 5 (16 O(82 Se 3n γ); yundl-6)
5362.2	(31/2+)	1222.24 19	100	4139.9	(29/2)+	E2	0.000507 8	$\alpha(K) = 0.000437 \ 7; \ \alpha(L) = 4.90 \times 10^{-5} \ 7; \ \alpha(M) = 8.75 \times 10^{-6} \ 13; \alpha(N) = 1.330 \times 10^{-6} \ 19 \alpha(O) = 7.51 \times 10^{-8} \ 11; \ \alpha(N+) = 1.245 \times 10^{-5} \ 18 E_{\gamma}: weighted average of 1222.3 \ 2 \ (^{82}Se(^{18}O, 5n\gamma)), \ 1221.9 \ 5 (^{16}O(^{82}Se, 3n\gamma)).$
5451.5		1311.6 5	100	4139.9	$(29/2)^+$			
5760.4 5896.1 6327.9	$(31/2^{-})$ $(27/2^{-})$ $(35/2^{+})$	643.0 5 1500.0 4 965.7 5	100 4.0 <i>10</i> 100	5117.4 4396.1 5362.2	$(27/2)^{-}$ $(23/2^{-})$ $(31/2^{+})$	E2		Mult.: adopted from $82Se(^{18}O,5n\gamma)$.
6708.6	(35/2 ⁻)	948.2 <i>3</i>	100	5760.4	(31/2 ⁻)	(E2)	0.000887 <i>19</i>	$\alpha(K)=0.000781 \ 17; \ \alpha(L)=8.80\times10^{-5} \ 14; \ \alpha(M)=1.570\times10^{-5} \ 25$ $\alpha(O)=1.35\times10^{-7} \ 4; \ \alpha(N+)=2.52\times10^{-6}$ $E_{\gamma}: weighted average of 948.2 \ 4 \ (^{82}Se(^{18}O,5n\gamma)), \ 948.2 \ 5 \ (^{16}O(^{82}Se,3n\gamma)), \ 948.2 \ (^{16}O(^{16}Se,3n\gamma)), \ 948.2 \ (^{16}O(^{16}S$
7368.3	1/2+	4877 2 5155 4 5323 3 6045 7 6326 4 7165 2	8.2 11.3 2.6 7.7 13 100	2491 2213 2045 1318.23 1039.269 204.1163	$(3/2)^+$ $1/2^-, 3/2^-$ $(3/2)^+$ $(3/2^+, 5/2^+)$ $1/2^+$ $3/2^+$			
7427.1	$(31/2^{-})$	1531.0 10	3.0 10	5896.1	$(27/2^{-})$			
7451.0	$(37/2^{-})$	742.6 5	11 3	6708.6	$(35/2^{-})$			
1985.3	(39/2 ⁻)	534.5 5 1276 5 5	65 20	/451.0 6708.6	$(31/2^{-})$ $(35/2^{-})$			
8424.9	$(37/2^+)$	2097.0.5	6.5 20	6327.9	$(35/2^+)$			
9300.2	$(35/2^{-})$	1873.0 10	2.0 5	7427.1	$(31/2^{-})$			
9654.7	$(41/2^{-})$	1669.3 5	100	7985.3	(39/2 ⁻)			
0508.9	$(45/2^{-})$	854.2 5	100	9654.7	$(41/2^{-})$			

[†] From (α,3nγ), except as noted.
[‡] From comparison to RUL, except as noted.
[#] From γ(θ) in (α,nγ) or (α,3nγ), except as noted.

⁹⁵₄₂Mo₅₃-17

γ (⁹⁵Mo) (continued)

[@] From ⁹⁵Nb β^- decay (3.61 d) 2000He14.

[&] From 61-d ε decay.

^{*a*} D,Q from comparison to RUL. ΔJ^{π} =2,no from the level scheme.

^b Weighted average of $I\gamma(561\gamma)/I\gamma(766\gamma)=1.3\times10^{-4}$ 3 from 35-d β^- decay and 1.5×10^{-4} 6 from 20-h ε decay.

 c From 20-h ε decay.

^d From $\gamma\gamma(\theta)$ and linear pol in 61-d ε decay.

^{*e*} From $\gamma(\theta)$ in Coulomb excitation and observation in Coulomb excitation.

^{*f*} From $\gamma(\theta)$ in Coulomb excitation.

^g Unweighted average of $I\gamma(182\gamma)/I\gamma(948\gamma)=1.3\times10^{-3}$ 4 from 20-h ⁹⁵Tc ε decay and 2.2×10^{-3} 5 from Coulomb excitation.

^h From α (K)exp in 61-d ε decay. E1+M2, δ (219 γ)=0.521 *12* and δ (253 γ)=0.44 *5*, excluded by comparison to RUL.

^{*i*} From (α ,n γ).

^{*j*} D+Q or Q from $\gamma(\theta)$ in $(\alpha,n\gamma)$ or $(\alpha,3n\gamma)$. $\Delta\pi$ =no from the level scheme.

^{*k*} From $\gamma(\theta)$ and γ -polarization in $(\alpha, n\gamma)$ or $(\alpha, 3n\gamma)$.

¹ D,E2 from comparison to RUL. ΔJ^{π} =2,no from the level scheme.

^m Multiply placed with undivided intensity.

^{*n*} Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

⁹⁵₄₂Mo₅₃

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

⁹⁵₄₂Mo₅₃

⁹⁵₄₂Mo₅₃

 $^{95}_{42} Mo_{53}$