

## 96 **Mo**( $^{3}$ **He**,α) **1975Sc14**

History

| Туре            | Author                                   | Citation             | Literature Cutoff Date |
|-----------------|------------------------------------------|----------------------|------------------------|
| Full Evaluation | S. K. Basu, G. Mukherjee, A. A. Sonzogni | NDS 111, 2555 (2010) | 30-Jun-2009            |

E( $^3$ He)=18 MeV. Measured  $\sigma(\theta=25^\circ-85^\circ)$ ; Si telescopes. FWHM=40 keV. DWBA.

## 95Mo Levels

| E(level)        | $J^{\pi \dagger}$       | L‡                                   | $C^2S$ | Comments                                                |
|-----------------|-------------------------|--------------------------------------|--------|---------------------------------------------------------|
| 0.0             | 5/2+#                   | (2) <sup>@</sup>                     | 2.58   |                                                         |
| 202 10          | $(5/2^+)^{\&}$          | $\binom{(2)}{4^a}^{\textcircled{a}}$ | 0.10   | $J^{\pi}$ : discrepant with adopted $J^{\pi}=3/2^{+}$ . |
| 756 <i>5</i>    | 7/2+                    |                                      | 0.45   |                                                         |
| 816 <i>10</i>   | $(3/2^+)^{\&}$          | $(2)^{@}$                            | 0.14   |                                                         |
| 949 5           | 7/2+                    | 4 <sup>a</sup>                       | 0.22   | $J^{\pi}$ : discrepant with adopted $J^{\pi}=9/2^{+}$ . |
| 1059 <i>5</i>   | $(5/2^+)$               | $(2)^{@}$                            | 0.11   |                                                         |
| 1584? <i>10</i> |                         |                                      |        |                                                         |
| 1659 <i>10</i>  | $(9/2^+)$               | 4 <sup>a</sup>                       | 0.19   |                                                         |
| 1886? <i>10</i> |                         |                                      |        |                                                         |
| 1927 10         | 11/2-&                  | 5 <b>a</b>                           | 0.39   |                                                         |
| 2312 10         | $(1/2^{-})^{\&}$        | (1)                                  | 0.37   |                                                         |
| 2415 10         | 9/2+ <mark>&amp;</mark> | 4 <sup>a</sup>                       | 1.30   |                                                         |
| 2515 10         | 9/2+ <mark>&amp;</mark> | 4 <mark>a</mark>                     | 0.92   |                                                         |
| 3310 <i>10</i>  |                         | $(4)^{b}$                            | 0.36   |                                                         |
| 3410 <i>10</i>  |                         | $(4)^{b}$                            | 0.81   |                                                         |
| 3510 <i>10</i>  |                         | $(4)^{\mathbf{b}}$                   | 0.25   |                                                         |

 $<sup>^\</sup>dagger$  Most likely value based on shell-model arguments, except as noted.

 $<sup>^{\</sup>ddagger}$  From DWBA analysis of  $\sigma(\theta)$ , except as noted.

<sup>\*</sup> From the Adopted Levels.

<sup>&</sup>lt;sup>@</sup> Primarily based on the (d,t) data of 1970Di06.

<sup>&</sup>amp; From 1970Di06.

<sup>&</sup>lt;sup>a</sup> Distinction between L=4 and L=5 is also based on the ratio of experimental (1964Hj02 and 1970Di06 for (d,t)) and theoretical cross sections of  $(^3He,\alpha)$  and (d,t) reactions leading to same final states.

<sup>&</sup>lt;sup>b</sup> L=4 assigned since the strongly excited 1927keV state should exhaust most of the 1h11/2 strength.