¹⁶**O**(⁸²Se,3nγ) **2009Zh11**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. K. Basu, G. Mukherjee, A. A. Sonzogni	NDS 111, 2555 (2010)	30-Jun-2009

2009Zh11: ${}^{16}O({}^{82}Se,3n\gamma),E=460$ MeV; measured E γ , I γ , $\gamma\gamma$; deduced angular distribution asymmetry ratios; GASP array consisting of 40 Compton-suppressed Ge detectors and a multiplicity filter of 80 BGO elements. Comparisons with shell-model calculations.

E(level) [†]	J^{π}	E(level) [†]	J^{π}	E(level) [†]	\mathbf{J}^{π}	E(level) [†]	\mathbf{J}^{π}
0.0^{\ddagger}	5/2+	2232.2 [‡] 6	$(15/2^+)$	4048.1 ^{#} 8	(23/2-)	7451.2 [#] <i>12</i>	(37/2-)
765.9 [‡] 4	7/2+	2580.3 [‡] 6	$(17/2^+)$	4140.0 [‡] <i>10</i>	$(29/2^+)$	7985.5 [#] 12	(39/2 ⁻)
947.6 [‡] 4	9/2+	2611.4 [#] 6	$(15/2^{-})$	5117.6 [#] 9	$(27/2^{-})$	8424.7 [‡] <i>13</i>	$(37/2^+)$
1540.6 [‡] 5	$11/2^{+}$	2618.4 [‡] 7	$(19/2^+)$	5361.9 [‡] <i>11</i>	$(31/2^+)$	9654.8 [#] 13	$(41/2^{-})$
1551.7 5	$(9/2^+)$	2770.1 [‡] 8	$(21/2^+)$	5760.6 [#] 10	$(31/2^{-})$	10509.0 [#] 14	$(45/2^{-})$
1937.6 [#] 6	$11/2^{-}$	3277.4 [#] 8	(19/2 ⁻)	6327.6 [‡] 12	$(35/2^+)$		
2058.3 6	$(13/2^+)$	3672.5 [‡] 9	$(25/2^+)$	6708.8 [#] 11	(35/2 ⁻)		

[†] From least-squares fit to $E\gamma's$.

[‡] Band(A): γ cascade based on 5/2⁺.

[#] Band(B): γ cascade based on (11/2⁻).

$\gamma(^{95}Mo)$

Angular distribution asymmetry ratios R_{ADO} are $I\gamma(34^{\circ})/I\gamma(90^{\circ})$; where $I\gamma$ were obtained from $\gamma\gamma$ coincidence spectra gated with any multipolarity. Typical values are significantly larger than 1 for $\Delta J=2$, quadrupole and <1 for $\Delta J=1$, dipole transitions. It should be noted that R_{ADO} value can be the same for $\Delta J=0$, dipole and for $\Delta J=1$, mixed transitions.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	π f	Comments
38.0 5		2618.4	$(19/2^+)$	2580.3 (17/2	(2^{+})	
151.7 5	77 8	2770.1	$(21/2^+)$	2618.4 (19/2	(2^{+})	R _{ADO} =0.86 21.
174.0 5	≥3.0	2232.2	$(15/2^+)$	2058.3 (13/2	(2+)	
348.0 5	80 8	2580.3	$(17/2^+)$	2232.2 (15/2	(2+)	R _{ADO} =0.86 5.
386.0 5	≥ 8.0	1937.6	$11/2^{-}$	1551.7 (9/2-	+)	R _{ADO} =0.85 12.
386.3 5	6.7 20	2618.4	$(19/2^+)$	2232.2 (15/2	(2+)	R _{ADO} =1.63 24.
467.5 5	30 <i>3</i>	4140.0	$(29/2^+)$	3672.5 (25/2	(2+)	R _{ADO} =1.65 18.
522.0 5	6.0 18	2580.3	$(17/2^+)$	2058.3 (13/2	(2+)	
534.5 5	8.5 26	7985.5	$(39/2^{-})$	7451.2 (37/2	(2-)	R _{ADO} =0.54 10.
553.0 5	≥4.0	2611.4	$(15/2^{-})$	2058.3 (13/2	(2+)	
593.2 5	55 6	1540.6	$11/2^{+}$	947.6 9/2+	-	R _{ADO} =0.80 11.
604.0 5	≥5.0	1551.7	$(9/2^+)$	947.6 9/2+	-	
643.0 5	39 4	5760.6	$(31/2^{-})$	5117.6 (27/2	(2-)	R _{ADO} =1.92 <i>16</i> .
666.0 5	≥14.7	3277.4	$(19/2^{-})$	2611.4 (15/2	(2-)	R _{ADO} =1.80 20.
673.8 5	≥7.2	2611.4	$(15/2^{-})$	1937.6 11/2	2-	R _{ADO} =2.07 25.
691.5 5	100 10	2232.2	$(15/2^+)$	1540.6 11/2	2+	R _{ADO} =1.65 14.
742.6 5	11 <i>3</i>	7451.2	$(37/2^{-})$	6708.8 (35/2	(2-)	R _{ADO} =1.12 <i>13</i> .
765.8 5	≥45	765.9	$7/2^{+}$	$0.0 \ 5/2^+$	-	R _{ADO} =0.90 8.
770.6 5	≥12.8	4048.1	$(23/2^{-})$	3277.4 (19/2	(2-)	R _{ADO} =1.90 35.
774.4 5	45 5	1540.6	$11/2^{+}$	765.9 7/2+	-	R _{ADO} =1.60 13.
785.9 5		1551.7	$(9/2^+)$	765.9 7/2+	-	

Continued on next page (footnotes at end of table)

¹⁶O(⁸²Se,3nγ) 2009Zh11 (continued)

$\gamma(^{95}Mo)$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
854.2 5	12 4	10509.0	$(45/2^{-})$	9654.8 (41/2 ⁻)	R _{ADO} =1.45 <i>15</i> .
902.5 5	73 7	3672.5	$(25/2^+)$	2770.1 (21/2+)	R _{ADO} =1.70 14.
947.7 5	≥122	947.6	$9/2^{+}$	$0.0 \ 5/2^+$	R _{ADO} =2.2 4.
948.2 5	39 4	6708.8	$(35/2^{-})$	5760.6 (31/2-)	R _{ADO} =1.6 4.
965.7 5	13 4	6327.6	$(35/2^+)$	5361.9 (31/2 ⁺)	R _{ADO} =1.7 3.
1069.5 5	13 4	5117.6	$(27/2^{-})$	4048.1 (23/2 ⁻)	R _{ADO} =1.60 15.
1110.8 5	≥9.0	2058.3	$(13/2^+)$	947.6 9/2+	R _{ADO} =1.7 3.
1221.9 5	25.8 26	5361.9	$(31/2^+)$	$4140.0 (29/2^+)$	R _{ADO} =0.65 10.
1276.5 5	13 4	7985.5	$(39/2^{-})$	6708.8 (35/2-)	R _{ADO} =1.78 20.
1445.1 5	22.7 23	5117.6	$(27/2^{-})$	$3672.5 (25/2^+)$	R _{ADO} =0.85 8.
1669.3 5	16 5	9654.8	$(41/2^{-})$	7985.5 (39/2-)	R _{ADO} =1.15 18.
2097.0 5	6.5 20	8424.7	$(37/2^+)$	6327.6 (35/2+)	R _{ADO} =1.4 3.

[†] 2009Zh11 state that energy uncertainties are within 0.5 keV and the intensity uncertainties within 30%. A general energy uncertainty of 0.5 keV for all γ rays, 10% intensity uncertainty for I γ >20 and 30% for others have been assumed.

 $^{95}_{42}\mathrm{Mo}_{53}$

¹⁶O(⁸²Se,3nγ) 2009Zh11

