Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	31-Jan-2021		

$S(n)=14560 SY; S(p)=1510 SY; Q(\alpha)=-3130 SY$ 2017Wa10

Estimated uncertainties (2017Wa10): 640 for S(n), 570 for S(p) and $Q(\alpha)$.

 $S(2p)=2210\ 500,\ Q(\varepsilon p)=12180\ 400,\ Q(\varepsilon)=12970\ 500\ (syst,\ 2017Wa10);\ 10.2\ MeV\ 17\ (2018Pa20,\ from\ implants-\beta^+\ correlated energy curve, assuming that the observed endpoint energy corresponds to g.s. to g.s. <math>\beta^+\ transition$). $S(2n)=32120\ (theory,\ 2019Mo01)$.

- 2011StZW (also 2008KrZW): production and identification of 95 Cd in 9 Be(124 Xe,X) at E=1 GeV/nucleon. Measured yield and half-life of the decay of 95 Cd using FRS separator and RISING detector array for γ rays at GSI facility. Fig. 3.5 of A/Q versus Z particle identification plot, 42 counts were assigned to 95 Cd (in Fig. 3 of 2008KrZW, about ten events seem assigned to 95 Cd).
- 2016Ce02: ⁹⁵Cd nuclide produced and identified at RIBF-RIKEN facility in ⁹Be(¹²⁴Xe,X) reaction at E=345 MeV/nucleon with an average beam intensity of 30 pnA. Identification of ⁹⁵Cd was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss using BigRIPS separator and zero degree spectrometer ZDS. The separated nuclei were implanted in a wide range silicon-strip stopper array for ion and β particle detection WAS3ABi, consisting of three highly-segmented 1 mm thick double-sided silicon detectors, a stack of ten segmented 1 mm thick single-sided silicon strip detectors. The γ rays were detected by EURICA array of 84 HPGe detectors surrounding the WAS3ABi system. In addition an array of 18 LaBr₃(Ce) detectors was used for γ detection in fast-timing measurements.
- 2017Da07: ⁹⁵Cd produced in fragmentation of 345 MeV/nucleon ¹²⁴Xe beam on a 740 mg/cm² ⁹Be target at RIBF-RIKEN facility. Fragments were separated using the BigRIPS separator, followed by implantation into the active stopper SIMBA consisting of three double-sided silicon strip detectors (DSSSDs), and surrounded by the EURICA array consisting of 84 HPGe detectors. Measured E γ , I γ , E(p), I(p), $\beta\gamma$ -coin, $\beta^+\gamma$ p-coin, and half-life of the decay of ⁹⁵Cd.
- 2018Pa20: ⁹⁵Cd nuclide produced at RIBF-RIKEN facility in ⁹Be(¹²⁴Xe,X) reaction at E=345 MeV/nucleon with target thickness of 740 mg/cm². Identification of ⁹⁵Cd was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based first on magnetic rigidity (B ρ), and energy loss (Δ E) using BigRIPS separator and, in the second stage by B ρ -tof- Δ E measurement in the later stages of BigRIPS separator and ZeroDegree spectrometer (ZDS) using position-sensitive parallel-plate avalanche counters, plastic scintillators, and a gas-filled ionization chamber. The flight time through the separation and identification systems ranged from 600 to 630 ns depending on A and Z. The separated nuclei were implanted in a wide range segmented silicon-strip stopper array for ion and β particle detection system WAS3ABi, consisting of three highly-segmented 1 mm thick double-sided silicon strip detectors (DSSSDs). Q(β) value was measured using ten single-sided segmented strip detectors (SSSSDs) placed farther downstream. Measured (implant) β correlated decay curve, with a time correlation window of 5 seconds before and after ion implantation. The EURICA array was used for gamma-ray detection in coincidence with β particles and implants. No beta-delayed γ rays were observed in the decay of ⁹⁵Cd. Events for proton emission were separated from the positron events by requiring a minimum of 1500 keV energy deposited in a single pixel of a DSSSD. The β -decay correlation fraction was determined as the ratio of the integral of the parent β -decay fit components and the number of implanted ions which did not decay by β p events.
- 2018Pa20, 2017Da07 and 2016Ce02 are from experiments at the same laboratory (RIBF-RIKEN facility), with some of the same authors on these three papers.

⁹⁵ Cd	Levels
------------------	--------

T _{1/2}	Comments
$\frac{T_{1/2}}{32 \text{ ms } 3}$	$\frac{\text{Comments}}{\%\beta^+ = 100; \ \%\beta^+ p = 4.5 + 12 - 10 \ (2018Pa20)}$ $\varepsilon \text{ decay considered as negligible by 2018Pa20}.$ $\%\beta^+ p$: from number of single-pixel events with $\Delta E > 1500 \text{ keV} \ (2018Pa20).$ 476 implantation counts were assigned to ${}^{95}\text{Cd}$ by 2018Pa20. β -decay correlation fraction=68% 3. As no beta-delayed γ rays were observed, 2018Pa20 assumed $100 - (\%\beta^+ p) = 95.5 + 10 - 12 \ \beta^+$ feeding to the g.s. of ${}^{95}\text{Ag}$, implying log $ft=3.15$ for this transition. J ^{π} : (9/2 ⁺) proposed by 2017Da07, based on $g_{9/2}$ neutron orbital. 7/2 ⁺ , from $\Omega_n=7/2^+$ orbital proposed in
	g.s. of $(9/2^+)$ proposed by 2017Da07, based on $g_{9/2}$ neutron orbital. $7/2^+$, from $\Omega_n = 7/2^+$ orbital proposed in 2019Mo01.
	T _{1/2} 32 ms 3

Continued on next page (footnotes at end of table)

Adopted Levels (continued)

⁹⁵Cd Levels (continued)

E(level)	$T_{1/2}$
E(level)	11/

Comments

 $T_{1/2}$: measured by 2018Pa20, using maximum likelihood method (MLH) for $(implant)(\beta^+)$ -correlated decay curve, where the fit function contained the parent, β -daughter, and β p-daughter decay components with half-lives and $\%\beta$ p branching ratios, and a constant background for random correlations. Two generations of isotopes were considered in the Bateman equation. Decay constants for ⁹⁵Ag and ⁹⁴Pd daughters were taken from literature. Others: 29 ms 8 (2017Da07), 73 ms +53–28 (2011StZV, from 17 correlated events, and using maximum likelihood method (MLH)). Theoretical $T_{1/2}$ =54 ms (2019Mo01), 31.7 ms (1997He24, shell-model calculations).

Measured production σ =1.0 pb *1* (2016Ce02), 5.4 pb 28 (2011StZV).