⁹⁵Ag IT decay (<40 ms) 2003Do09

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. K. Basu, G. Mukherjee, A. A. Sonzogni	NDS 111, 2555 (2010)	30-Jun-2009

Parent: ⁹⁵Ag: E=4860.03 24; J^{π} =(37/2⁺); $T_{1/2}$ <40 ms; %IT decay=100.0 ⁹⁵Ag isomers produced in ⁵⁸Ni(⁴⁰Ca,p2n\gamma) reaction at 3.94 MeV/A, and separated by GSI on-line mass separator. Measured E γ , $I\gamma$, $\gamma\gamma$, $\beta\gamma\gamma$ coin and lifetimes using an array of 13 Ge crystals (a Cluster of 7 crystals, a Clover of 4 crystals, a single Ge

detector and a LEPS detector). The positrons were measured with a plastic scintillator.

 α : Additional information 1.

⁹⁵Ag Levels

E(level)	J^{π}	$T_{1/2}^{\dagger}$
0.0	$(9/2^+)$	1.85 s <i>34</i>
822.60 9	$(11/2^+)$	
936.51 9	$(13/2^+)$	
1939.71 <i>10</i>	$(15/2^+)$	
2103.51 14	$(17/2^{-})$	
2531.31 17	$(23/2^+)$	<16 ms
2690.11 20	$(25/2^+)$	
3984.62 22	$(29/2^+)$	
4860.03 24	$(37/2^+)$	<40 ms

[†] Deduced from intensity distribution of γ -ray versus time as measured in grow-in mode.

 $\gamma(^{95}Ag)$

I γ normalization: From Σ (I γ +ce) =100 to g.s..

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α	Comments
158.8 <i>1</i>	60 10	2690.11	(25/2+)	2531.31	(23/2+)	(M1+E2)	0.20 9	$\overline{ce(K)/(\gamma+ce)=0.14 5; ce(L)/(\gamma+ce)=0.023 12;};$ $ce(M)/(\gamma+ce)=0.0043 24;;$ $ce(N)/(\gamma+ce)=0.0007 4;;$ $ce(O)/(\gamma+ce)=2.3\times10^{-5} 7$ $\alpha(K)=0.16 7; \alpha(L)=0.027 15; \alpha(M)=0.005 3;$ $\alpha(N)=0.0009 5; \alpha(O)=2.7\times10^{-5} 9;$ $\alpha(N+)=0.0009 5$
								Mult.: expected from shell-model; also, because $I\gamma(158.8)$ is about 73 % of $I\gamma(1294.5)$, transition can only be dipole or E2.
163.8 <i>1</i>	106 11	2103.51	(17/2 ⁻)	1939.71	(15/2 ⁺)	(E1)	0.0391	ce(K)/(γ +ce)=0.0328 5; ce(L)/(γ +ce)=0.00393 6; ce(M)/(γ +ce)=0.000741 11; ce(N)/(γ +ce)=0.0001267 18 ce(O)/(γ +ce)=5.42×10 ⁻⁶ 8 α (K)=0.0341 5; α (L)=0.00408 6; α (M)=0.000770 11; α (N)=0.0001317 19; α (O)=5.63×10 ⁻⁶ 8 α (N+)=0.0001373 20 Mult.: expected from shell-model, also, because I γ (163.8) is very similar to I γ (427.8),
427.8 1	115 8	2531.31	(23/2+)	2103.51	(17/2 ⁻)	(E3)	0.0311	ce(K)/(γ +ce)=0.0249 4; ce(L)/(γ +ce)=0.00423 6; ce(M)/(γ +ce)=0.00822 12;

				⁹⁵ Ag IT decay (<40 ms)		2003Do09 (continued)	
	γ ⁽⁹⁵ Ag) (continued)							
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult.	α	Comments
822.6 1	36 8	822.60	(11/2+)	0.0	(9/2+)			$\begin{array}{l} ce(N)/(\gamma+ce)=0.0001372\ 20\\ ce(O)/(\gamma+ce)=4.33\times10^{-6}\ 6\\ \alpha(K)=0.0257\ 4;\ \alpha(L)=0.00437\ 7;\\ \alpha(M)=0.000847\ 12;\ \alpha(N)=0.0001415\ 20;\\ \alpha(O)=4.47\times10^{-6}\ 7\\ \alpha(N+)=0.0001459\ 21\\ Mult.:\ expected\ from\ shell-model,\ supported\ by\ a\ reasonable\ value\ of\ B(E3)(W.u.)>0.052.\\ Mult.:\ M1+E2\ assignment\ according\ to \end{array}$
875.4 1	76 7	4860.03	(37/2+)	3984.62	(29/2+)	(E4)	0.00678 10	shell-model calculations. $\alpha(K)=0.00574 \ 8; \ \alpha(L)=0.000847 \ 12;$ $\alpha(M)=0.0001633 \ 23; \ \alpha(N)=2.77\times10^{-5} \ 4$ $\alpha(O)=1.067\times10^{-6} \ 15; \ \alpha(N+)=2.88\times10^{-5} \ 4$ Mult.: expected from shell-model, supported
936.5 <i>1</i>	80 <i>9</i>	936.51	$(13/2^+)$	0.0	(9/2+)			by a reasonable value of B(E4)(W.u.)>28. Mult.: E2 assignment according to shell-model
1003.2 <i>1</i>	70 8	1939.71	(15/2+)	936.51	(13/2 ⁺)			calculations. Mult.: M1+E2 assignment according to
1117.1 <i>1</i>	40 10	1939.71	(15/2 ⁺)	822.60	$(11/2^+)$			shell-model calculations. Mult.: E2 assignment according to shell-model
1294.5 <i>1</i>	82 7	3984.62	$(29/2^+)$	2690.11	$(25/2^+)$			calculations. Mult.: E2 from shell-model calculation.

 † For absolute intensity per 100 decays, multiply by 0.82 9.

2

⁹⁵Ag IT decay (<40 ms) 2003Do09

 $^{95}_{47}{\rm Ag}_{48}$