$^{94}Y\beta^{-}$ decay **1976Si11**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 107, 2423 (2006)	1-Jan-2006				

Parent: ⁹⁴Y: E=0.0; $J^{\pi}=2^{-}$; $T_{1/2}=18.7 \text{ min } I$; $Q(\beta^{-})=4918 \ 7$; % β^{-} decay=100.0

⁹⁴Zr Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} †	E(level)	J^{π}
0.0	0^{+}	stable	3059.40 18	$(1,2,3)^+$
918.75 <i>5</i>	2^{+}	6.9 ps 15	3219.42 <i>13</i>	(1,2,3)
1300.12 17	0^{+}	0.291 ns 11	3361.17 18	(1,2,3)
1469.64 11	4+	0.500 ns 13	3724.9? 6	$(2,3,4)^+$
1671.39 8	2+		3961.8? <i>3</i>	$(2)^{+}$
2057.64 10	3-		4002.2 15	$(1,2)^+$
2151.36 21	2^{+}		4052.4 15	$(1,2)^+$
2331.6 4	4+		4098.5 15	$(1,2)^+$
2366.18 15	2^{+}		4198.8? 4	$(1,2)^+$
2846.3 <i>3</i>	(1^{-})		4237.6? 5	$(1,2,3)^+$
2908.03? 20	(2^{+})		4637.9? 9	$(1,2,3)^+$
2945.1 5	5-		4669.8? 9	$(1^-, 2^-, 3^-)$

 † From Adopted Levels.

β^- radiations

av E β =1.78 MeV 7 measured with Si-Li detector system (1982Al01).

E(decay)	E(level)	Iβ ^{-†‡}	Log ft	Comments
(248 [#] 7)	4669.8?	0.028 11	5.78 18	av Eβ=70.5
(280 [#] 7)	4637.9?	0.020 8	6.10 18	av E β =80.7
(680 [#] 7)	4237.6?	0.112 25	6.66 10	av E β =224.8
(719 [#] 7)	4198.8?	0.30 5	6.32 8	av E β =240.0
(820 7)	4098.5	0.022 12	7.66 24	av $E\beta = 279.9$
(866 7)	4052.4	0.006 3	8.31 22	av $E\beta = 298.6$
(916 7)	4002.2	0.011 6	8.14 24	av $E\beta=319.2$
(956 [#] 7)	3961.8?	0.27 4	6.82 7	av E β =335.9
(1193 [#] 7)	3724.9?	0.067 17	7.79 11	av Eβ=436.2
(1557 7)	3361.17	0.57 7	7.31 6	av $E\beta = 596.1$
(1699 7)	3219.42	0.95 11	7.24 5	av $E\beta = 659.8$
(1859 7)	3059.40	1.01 13	7.37 6	av $E\beta = 732.5$
(1973 7)	2945.1	0.078 18	$10.81^{2u} \ 10$	av E β =814.4
(2010 [#] 7)	2908.03?	0.21 4	8.19 9	av E β =801.9
(2072 7)	2846.3	0.41 5	7.95 6	av E β =830.3
(2552 7)	2366.18	0.56 7	8.19 6	av E β =1053.7
(2586 7)	2331.6	< 0.03	>10.8 ¹	av E β =1073.6
(2767 7)	2151.36	0.33 4	8.57 6	av E β =1154.6
(2860 7)	2057.64	5.3 5	7.42 5	av E β =1198.8
(3247 7)	1671.39	3.3 4	7.87 6	av E β =1381.8
(3448 7)	1469.64	4.1 4	9.39^{1u} 5	av E β =1475.6
(3618 7)	1300.12	1.83 20	9.87^{1u} 5	av Eβ=1555.5
(3999 7)	918.75	39.6 22	7.181 25	av E β =1740.8

Continued on next page (footnotes at end of table)

94 Y β^- decay 1976Si11 (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(4918 7)	0.0	41 4	9.35 ¹ <i>u</i> 5	av $E\beta$ =2174.0 $I\beta^-: \beta^-$ spectrum has first-unique forbidden shape (1971Ca34). The value $I\beta$ (918.8 $Iave)/I\beta(g s)=2.3.3$ deduced from β^- spectra (1971Ca34) is probably wrong because
				of uncertainties due to source thickness and because of the small energy interval

[†] Deduced from intensity balance assuming I γ normalization=0.56 3.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

 $\gamma(^{94}\text{Zr})$

I γ normalization: From comparison with known absolute intensities of 1024.2 γ (⁹¹Sr), 266.9 γ and 947.1 γ (⁹³Y), and 954.2 γ (⁹⁵Y) in the ²³⁵U thermal fission products (1975Ca13). The earlier value I γ normalization=0.736 22 (1971Ca34) which was

deduced from β -spectra (I β (918 level)/I β (g.s.)=2.3 3) is rejected by 1975Ca13.

1976Si11: Ge(Li), FWHM=2.0 keV at 1332 keV. Measured $E\gamma$, $I\gamma$.

1975Ca13: deduced absolute intensity of 919.2γ .

1973Si43: Ge(Li), FWHM=2.1 keV at 1332 keV. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$. Plastic scin, measured β -spectra, $\beta\gamma$.

measured (1975Ca13).

1972Ho03: Ge(Li), FWHM=5.4 keV at 1332 keV. Measured $E\gamma$, $I\gamma$.

1971Ca34: Ge(Li), FWHM=4 keV. NaI(Tl). Measured E γ , I γ , $\gamma\gamma$. Magnetic spectrometer, measured β -spectra.

Other measurements: 1966Fi04, 1959Kn38.

The decay scheme of 1976Si11 is adopted. It is based on the $\gamma\gamma$ measurements of 1971Ca34. Levels based on the γ -ray energies alone are denoted as questionable.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \&}$	E_i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult.@	$\delta^{@}$	α^{a}	Comments
308.2 <i>3</i>	0.10 2	2366.18	2+	2057.64 3-	E1(+M2)	+0.04 +22-27	0.005 3	α=0.005 3; α(K)=0.0040 22; α(L)=0.0004 3
381.6 2	3.6 3	1300.12	0^+	918.75 2+	[E2]		0.0099	α =0.0099; α (K)=0.0085 3; α (L)=0.00102 3
550.9 1	8.8 5	1469.64	4+	918.75 2+	[E2]		0.00319	α =0.00319; α (K)=0.00276 9; α (L)=0.00032 <i>l</i>
588 <i>1</i>	0.3 1	2057.64	3-	1469.64 4+				
694.7 <i>3</i>	0.34 6	2366.18	2+	1671.39 2+	M1(+E2)		0.00160 8	α=0.00160 8; α(K)=0.00139 7; α(L)=0.00015 <i>l</i>
752.6 1	2.5 2	1671.39	2^{+}	918.75 2+				
887.5 [#] 4	0.14 3	2945.1	5-	2057.64 3-				
918.74 [‡] 5	100	918.75	2+	$0.0 0^+$	E2		0.00083	$\alpha = 0.00083; \alpha(K) = 0.00072 2$
1001.8 3	0.11 3	3059.40	$(1.2.3)^+$	2057.64 3-				
1066.5 <i>3</i>	0.11 3	2366.18	2+	1300.12 0+	E2		0.00051	$\alpha = 0.00051; \alpha(K) = 0.00051 2$
1138.9 <i>1</i>	10.7 7	2057.64	3-	918.75 2+				
1161.8 <i>1</i>	1.24 15	3219.42	(1,2,3)	2057.64 3-				
1232.6 2	0.59 6	2151.36	2+	918.75 2+	M1+E2	-1.7 +8-14	0.00038	$\alpha = 0.00038; \alpha(K) = 0.00038$
1236.6 <mark>b</mark> 2	0.23 6	2908.03?	(2^{+})	1671.39 2+				
1303.8.6	0.08.2	3361 17	(123)	$2057.64.3^{-1}$				
x1384.4 6	0.05 2	2201.17	(1,2,5)	2007.01 5				
1411.9 7	0.14 3	2331.6	4+	918.75 2+	E2(+M3)	-0.13 +13-9	0.00029 4	$\alpha = 0.00029 \; 4; \; \alpha(K) = 0.00029$

94 Y β^{-} decay	1976Si11 (continued)
-----------------------------	----------------------

$\gamma(^{94}\text{Zr})$ (continued)

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger}\&$	E _i (level)	J^{π}_i	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{a}	Comments
1447.4 2	0.45 7	2366.18	2+	918.75	2^{+}	M1+E2	+0.64 +14-12	0.00027	$\alpha = 0.00027; \alpha(K) = 0.00027$
^x 1587.9 6	0.06 2								· · · ·
^x 1630.0 5	0.06 2								
1671.4 <i>1</i>	4.4 4	1671.39	2^+	0.0	0^+				
1891.6 2	0.69 8	3361.17	(1,2,3)	1469.64	4'				
1904.60 8	0.06 2	3961.8?	$(2)^+$	2057.64	3^{-}				
x1940.6.6	0.07 2	2840.5	(1)	918.75	2				
$1080 3^{b} 7$	0.07 2	2008 032	(2^{+})	018 75	2+				
2140.6 2	1.7 2	3059.40	$(1.2.3)^+$	918.75	$\frac{2}{2^{+}}$				
$2255 3^{b} 7$	0.06.2	3724.92	$(2,3,4)^+$	1469 64	- 4 ⁺				
2300.5 3	0.32 5	3219.42	(1,2,3)	918.75	2^{+}				
^x 2348.7 10	0.06 2								
2442.1 3	0.25 5	3361.17	(1,2,3)	918.75	2^{+}				
2492.0 ^b 3	0.38 6	3961.8?	$(2)^{+}$	1469.64	4+				
2527.3 ^b 4	0.36 6	4198.8?	$(1,2)^+$	1671.39	2^{+}				
2566.2 ^b 5	0.11 3	4237.6?	$(1,2,3)^+$	1671.39	2^{+}				
2662.4 <mark>b</mark> 10	0.05 2	3961.8?	$(2)^{+}$	1300.12	0^{+}				
2805.9 ^b 10	0.06 2	3724.9?	$(2,3,4)^+$	918.75	2^{+}				
2846.3 <i>3</i>	0.66 7	2846.3	(1 ⁻)	0.0	0^+				
2898.7 <mark>b</mark> 6	0.18 4	4198.8?	$(1,2)^+$	1300.12	0^+				
2908.4 ^b 8	0.08 3	2908.03?	(2^{+})	0.0	0^+				
2966.6 <mark>b</mark> 10	0.02 1	4637.9?	$(1,2,3)^+$	1671.39	2^{+}				
2998.4 ^b 10	0.030 15	4669.8?	$(1^{-},2^{-},3^{-})$	1671.39	2^{+}				
x3190.3 10	0.032 15								
^x 3264.4 ₇	0.11 3								
3318.7 ^b 7	0.09 3	4237.6?	$(1,2,3)^+$	918.75	2^{+}				
x3477.3 10	0.04 2								
^x 3541.5 10	0.02 1								
x3666 5 15	0.030 13								
$3718 8^{b} 15$	0.02 1	4637 92	$(1 2 3)^{+}$	918 75	2^{+}				
3750.0^{b} 15	0.013 10	4660.82	(1,2,3) (1-2-3-)	018 75	2+ 2+				
x3795.2 15	0.02 1	1007.01	(1,2,3)	10.15	4				
4002.1 15	0.02 1	4002.2	$(1,2)^+$	0.0	0^+				
4052.3 15	0.010 5	4052.4	$(1,2)^+$	0.0	0^+				
4098.4 15	0.04 2	4098.5	$(1,2)^+$	0.0	0^{+}				

[†] From 1976Si11.

[±] Measured by 1979Bo26 using a curved-crystal spectrometer.

[#] Placed from the 3219 level by 1976Si11 but excitation function in $(n,n'\gamma)$ indicates deexcitation of a lower-excited level. [@] From ⁹⁴Zr $(n,n'\gamma)$ (1978Gl04).

[&] For absolute intensity per 100 decays, multiply by 0.56 3.

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

94 Y β^{-} decay 1976Si11

94 Y β^{-} decay 1976Si11

⁹⁴Y β⁻ decay 1976Si11

Decay Scheme (continued)

