	Hist	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 107, 2423 (2006)	1-Jan-2006

1994Ro08: ⁵⁸Ni(⁴⁰Ca,4p γ), E=180 MeV. Measured E γ , I γ , $\gamma\gamma$ and $\gamma(\theta)$ using 15 BGO-shielded HPGe detectors situated in three rings of the NORDBALL frame.

1999Ju03: 58 Ni(40 Ca,4p γ), E=145 MeV. Measured E γ , $\gamma\gamma$ and lifetimes using an array of six EUROBALL cluster detectors. Lifetimes were measured using recoil-distance Doppler-shift method.

1999Ju04: ⁵⁸Ni(40 Ca,4p γ), E=145 MeV. Measured magnetic moments of the 12⁺ and 11⁻ yrast states via the IMPAD technique.

1980No06: ⁵⁸Ni(⁴⁰Ca,4p γ), E=135 MeV, 160 MeV. Measured E γ , I γ , $\gamma\gamma$, T_{1/2} with recoil-distance Doppler-shift method. Other: 1983Pi05, using ⁶⁰Ni(⁴⁰Ca, α 2p γ).

1971Le19, 1977Ha49: ⁹²Mo(α ,2n γ) E=25,30 MeV. Measured E γ , $\gamma(\theta)$, T_{1/2}.

1977Ha49: ⁶³Cu(³⁵Cl,2p2n γ) E=120 MeV. Measured E γ , $\gamma\gamma(\theta)$,T_{1/2}.

Level scheme from 1994Ro08.

⁹⁴Ru Levels

E(level) [#]	J^{π}	T _{1/2}	Comments
0.0@	0^{+}	51.8 min 6	T _{1/2} : from Adopted Levels.
1430.71 [@] 20	2+		-1/2.
$2186.6^{@}$ 3	4+		
$2498.0^{\textcircled{0}}{3}$	6+	65 ns 2	$T_{1/2}$; from 1977Ha49, other; 74 ns 7 (1971Le19).
2624.4 ^{&} 3	5-	0.51^{\ddagger} ns 5	$T_{1/2}$: other: 0.53 ns +50-20 (1980No06).
2644.1 [@] 4	8+	71 μs 4	$T_{1/2}$: from 1971Le19, other: 68 μ s 10 (1977Ha49).
3657.6 ^{&} 4	(7^{-})	1	
3930.1 4	(8+)		
3991.2 [@] 4	$(10)^{+}$	<3.47 [‡] ps	
4197.3 ^{&} 4	(9)-		
4338.5 4	(9)-		
4489.1 ^{&} 4	$(11)^{-}$	0.760 [‡] ns 35	$T_{1/2}$: other: 0.78 ns <i>12</i> (1980No06).
4716.6 [@] 4	$(12)^{+}$	23.8 [‡] ps 11	$T_{1/2}$: other: 35 ps 3 (1980No06).
5567.8 ^{&} 4	$(13)^{-}$	2.01 [‡] ps 22	$T_{1/2}$: other: 6 ps (1980No06).
6275.1 4	(12^{+})		
6357.6 4	(12^{+})	+	
6614.4 ^w 4	$(13)^+$	0.87 [‡] ps 12	$T_{1/2}$: other: 5 ps (1980No06).
6918.94	$(13)^+$	0.22	
/15/.6 4	$(14)^{-1}$	0.33 ⁴ ps 4	
1108.54	$(15)^+$	$< 0.28^{\pm}$ ns	
7909.9.4	$(15)^+$	<0.28° ps	
7970.0 4	$(13)^{-}$		
8039.4 4	(14^{+})		
8133.2 4	$(15)^{-}$		
8152.3 4	(14)	+	
8271.8 ^{cc} 4	$(14)^{-}$	0.291 ⁺ ps 28	
8411.2 ^{^w} 4	$(16)^+$	<0.69 [‡] ps	
8501.5 [∞] 4	$(15)^{-}$	1.28 ⁺ ps 8	
8/36.7 4	$(15)^{-1}$		
8006 7 ^{&} 1	$(15)^{-}$	$<0.60^{\pm}$ ns	
0790./** 4	(10)	<0.09° bs	

1994Ro08,1999Ju03 (continued) $(HI,xn\gamma)$

E(level) [#]	$J^{\pi \dagger}$	T _{1/2}	E(level) [#]	J^{π}
9041.7 [@] 4 9134.9 4 9254.2 4	$(17)^+$ $(16)^-$ (17^-) (16^-)	<1.4 [‡] ps	12922.8 <i>4</i> 12940.0 <i>5</i> 13053.4 <i>5</i> 13077 7 <i>5</i>	(20^{-}) (20^{+}) (22^{-}) (21^{-})
9404.0 4 9526.6 4 9789.2 4 9921 0 4	(10^{-}) $(18)^{+}$ (17^{-}) $(19)^{+}$	$0.360^{\ddagger} \text{ ps } 21$	13077.7 5 13247.0 5 13623.8 5 13896 9 4	(21^{-}) $(20^{+},21^{+})$ (21^{+}) (21^{-})
9928.6 ^{&} 4 10129.4 4 10444.3 4	$(19)^{-}$ $(18)^{-}$ (17^{-}) $(19)^{-}$ (18^{-})	3.49^{\ddagger} ps 24	13917.0 5 13938.8 4 14226.7 5 14203 5 5	(21^{-}) $(23^{-},24^{-})$ $(21^{-},22^{-})$ (21^{-}) (23^{-})
11041.8 ^{&} 4 11451.7 5 12077.2 5 12429.6 5 12484.1 4	$(10^{-})^{-}$ $(20)^{-}$ $(19^{+})^{-}$ $(20^{+},21^{+})^{-}$ $(20^{-},21^{-})^{-}$	<1.8 [‡] ps	14674.8 5 14805.7 4 15289.4 4 16767.4 5 18321 4 5	$(25^{-})^{-}$ $(21^{-},22^{-})$ $(21^{-},22^{-})$ $(22^{-},23^{-})$ $(24^{-},25^{-})$ $(25^{-},26^{-},27^{-})$

⁹⁴Ru Levels (continued)

[†] From γ multipolarity and band patterns (1994Ro08).

[‡] From 1999Ju03.

[#] From least-squares fit to $E\gamma$'s, assuming $\Delta(E\gamma)=0.2$ keV for each γ , based on general comment in 1994Ro08. [@] Band(A): Cascade based on 0⁺.

& Band(B): Cascade based on 5⁻.

$\gamma(^{94}\text{Ru})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
119.7 [@] 2	1.1 [@] 1	9254.2	(17 ⁻)	9134.9 (16)-		R=0.76 <i>11.</i> Iγ and R for 119.7+120.1.
$120.1^{\textcircled{0}}2$	1.3 [@] 1	8271.8	$(14)^{-}$	8152.3 (14)-		,
126.5 2	5.2 2	2624.4	5-	2498.0 6+	E1	R=0.81 6.
137.0 2	0.7 1	7909.9	$(15)^+$	7773.1 $(15)^+$		
139.6 2	16.8 2	9928.6	$(18)^{-}$	9789.2 (17 ⁻)	M1	R=0.82 2.
146.1 2	0.2 1	2644.1	8+	2498.0 6+	E2 [#]	Mult.: from $\gamma(\theta)$ and B(E2) = 0.00353 20, closer to unity than any other multipolarity.
150.7 2	0.7 1	4489.1	$(11)^{-}$	4338.5 (9)-	E2	R=1.18 26.
227.4 2	0.8 1	4716.6	$(12)^{+}$	4489.1 (11)-		
229.8 2	15.3 <i>3</i>	8501.5	$(15)^{-}$	8271.8 (14)-	M1	R=0.87 3.
256.7 [@] 2	24.5 [@] 2	6614.4	(13)+	6357.6 (12+)		Iγ and R for 256.7+257.3.
$257.3^{\textcircled{0}}2$	24.5 [@] 2	9254.2	(17^{-})	8996.7 (16)-		$I\gamma$ and R for 256.7+257.3.
259.7 2	4.1 2	8996.7	$(16)^{-}$	8736.7 (15)-	M1	Ř=0.89 5.
267.2 2	2.4 1	4197.3	$(9)^{-}$	3930.1 (8+)		R=1.08 8.
281.6 2	3.0 1	9134.9	$(16)^{-}$	8853.4 (15 ⁻)		R=0.78 5.
291.7 2	19.8 2	4489.1	$(11)^{-}$	4197.3 (9)-	E2	R=1.34 <i>3</i> .
301.7 2	0.8 2	8271.8	$(14)^{-}$	7970.0 (14)-	M1	
311.4 2	6.6 2	2498.0	6+	2186.6 4+	E2 #	R=1.25 6.
						Mult.: from $\gamma(\theta)$ and B(E2) = 0.117 4.

Asymmetry Ratio $R=2I(143^{\circ})/[I(79^{\circ})+I(101^{\circ})]$ from 1994Ro08.

(HI,xnγ) **1994Ro08,1999Ju03** (continued)

γ (⁹⁴Ru) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.‡	Comments
325.2 2	3.3 2	9789.2	(17^{-})	9464.0	(16^{-})		R=0.90 6.
349.0 2	6.0 <i>3</i>	8501.5	$(15)^{-}$	8152.3	$(14)^{-}$	M1	R=0.60 5.
368.3 2	4.3 2	8501.5	$(15)^{-}$	8133.2	$(15)^{-}$	M1	R=1.60 9.
383.9 2	2.7.3	8152.3	$(14)^{-}$	7768.3	$(13)^{-}$		
394.3.2	9.2.3	9921.0	$(19)^+$	9526.6	$(18)^+$	M1	R=0.76.4
398.1.2	4.1.2	9134.9	$(16)^{-}$	8736.7	$(15)^{-}$		R=0.85 6
401 9 2	172	9928.6	$(18)^{-}$	9526.6	$(13)^+$		R=0.86.13
415.4.2	252	10544.8	(18^{-})	10129.4	(10) (17^{-})		R=0.77.9
43772	1133	2624.4	5-	2186.6	(1,) 4 ⁺	F1	R = 1.09.4
461.9.2	373	8501.5	$(15)^{-}$	8039.4	(14^+)	L1	R=0.68.8
464.8.2	312	8736.7	$(15)^{-}$	8271.8	$(14)^{-}$		$R = 0.68 \ 0$
183 8 2	5.1 2	15280 /	(13) $(22^{-}23^{-})$	1/1805 7	$(21^{-}22^{-})$		R=0.00 7.
405.02	<14.3	0526.6	(22, 23)	00/117	(21, 22)	M1	P = 0.76.3
404.7 2	≤ 14.5	9520.0	(10)	9041.7	(17)	1111	K = 0.70 J.
105 0 2	20.6.5	2006 7	$(16)^{-}$	9501 5	$(15)^{-}$	M1	$P_{-0.76,2}$
493.0 2	39.0 3	6990.7 4490.1	(10)	8301.3	(13)		R=0.70.2
498.0 2	42.5 4	4469.1	(11)	3991.2	(10)		R=0.98 2.
501.0 2	≤ 1.1	8411.2	$(10)^{-1}$	7909.9	$(15)^{-1}$	(M1)	R=0.72 4.
503.3 Z	212	82/1.8	(14)	//68.3	(13)		
~510.8 2	3.1 2	10444.2	(10) =	0020 ((10) =		D 0.01 5
515.6 2	10.3 3	10444.3	(19)	9928.6	(18)	1.61	R=0.81 5.
531.6 2	4.7.2	8501.5	(15)	7970.0	(14)	MI	R=0.90 7.
539.6 2	17.9 3	4197.3	(9)-	3657.6	('/-)		R=1.25 3.
543.0 2	36.2 4	7157.6	$(14)^{+}$	6614.4	$(13)^{+}$	M1	R=0.81 2.
581.8 2	2.7 3	8853.4	(15^{-})	8271.8	$(14)^{-}$		R=0.77 16.
584.2 2	5.8 <i>3</i>	8736.7	$(15)^{-}$	8152.3	$(14)^{-}$		R=0.79 7.
597.5 2	7.4 <i>3</i>	11041.8	$(20)^{-}$	10444.3	(19) ⁻	M1	R=1.42 8.
603.7 2	1.3 <i>3</i>	8736.7	$(15)^{-}$	8133.2	$(15)^{-}$		
610.6 2	4.9 <i>3</i>	9464.0	(16 ⁻)	8853.4	(15^{-})		R=0.57 7.
615.3 2	≤22.3	7773.1	$(15)^{+}$	7157.6	$(14)^+$	(M1)	R=0.67 2.
							I γ and R for 615.3+615.7.
615.7 2		10544.8	(18 ⁻)	9928.6	(18) ⁻		
630.2 2	21.2 3	9041.7	$(17)^{+}$	8411.2	$(16)^{+}$	M1	R=0.72 2.
638.0 2	16.5 <i>3</i>	8411.2	$(16)^+$	7773.1	$(15)^{+}$	M1	R=0.72 2.
654.1 2	3.6 2	9789.2	(17 ⁻)	9134.9	(16)-		R=0.68 6.
674.4 2	10.4 <i>3</i>	9928.6	$(18)^{-}$	9254.2	(17^{-})	M1	R=1.76 5.
680.9 2	1.6 2	4338.5	$(9)^{-}$	3657.6	(7^{-})		R=1.14 19.
683.8 2		13623.8	(21^{+})	12940.0	(20^{+})		
701.1 2	3.9 <i>3</i>	8853.4	(15-)	8152.3	$(14)^{-}$		R=0.94 10.
x707.7 2	1.8.2						
725.0.2		8996.7	$(16)^{-}$	8271.8	$(14)^{-}$		
725.3.2	<51.8	4716.6	$(12)^+$	3991.2	$(10)^+$	E2	R=1.62.3
/2010 2	_0110	171010	(12)	077712	(10)		Ly and R for $725.0+725.3$
733 3 2	432	8501.5	$(15)^{-}$	7768 3	$(13)^{-}$	F2	R=1.56.11
752.1.2	822	7000.0	$(15)^+$	7157.6	$(13)^+$		R = 1.50 11. R = 0.73 4
752.12	0.2 2	7909.9	(15)	1420.71	(14)	(TO)#	R-0.75 7.
/55.9.2	19.8 3	2186.6	4'	1430.71	21	(E2)"	R=1.24 3.
<i>192.4 2</i>	17.93	9789.2	(1/)	8996.7	(16)		R=0.81 3.
			(10) -		(1 C) -		$I\gamma$ and R for $792.4 + 793.4$.
793.4 2	17.9 3	9928.6	$(18)^{-}$	9134.9	$(16)^{-}$	E2	DCO=0.81 3.
							$I\gamma$ and R for 792.4+793.4.
863.6 2	1.7 3	13917.0	$(23^{-}, 24^{-})$	13053.4	(22^{-})		R=0.86 24.
867.0 2	1.1 3	14805.7	$(21^-, 22^-)$	13938.8	$(21^{-}, 22^{-})$		R=1.37 48.
879.3 2	2.9 3	9921.0	$(19)^+$	9041.7	$(17)^+$	E2	R=2.07 29.
886.8 2	3.1 3	9928.6	$(18)^{-}$	9041.7	$(17)^{+}$		R=0.87 10.
931.9 2	13.5 <i>3</i>	9928.6	(18)-	8996.7	(16)-	E2	R=1.48 <i>6</i> .
963.4 2	1.3 <i>3</i>	8736.7	$(15)^{-}$	7773.1	$(15)^+$		R=0.82 <i>33</i> .

Continued on next page (footnotes at end of table)

$(HI,xn\gamma)$ 1994Ro08,1999Ju03 (continued) $\gamma(^{94}\text{Ru})$ (continued) E_{γ}^{\dagger} I_{γ}^{\dagger} E_i(level) J_i^{π} \mathbf{E}_{f} J_f^{π} Mult. Comments (E2)[#] 2624.4 5-1033.3 2 18.6 3 3657.6 (7^{-}) R=1.28 4. 1078.8 2 59.0 5 4489.1 (11) R=1.61 3. 5567.8 $(13)^{-}$ E2 1113.4 2 ≤33.8 11041.8 $(20)^{-}$ 9928.6 (18) E2 R=1.54 4. $I\gamma$ and R for 1113.4+1115.6. 1115.6 2 9526.6 $(18)^{+}$ 8411.2 (16)+ 1158.8 2 5.3 3 7773.1 $(15)^{+}$ 6614.4 (13)+ E2 R=1.69 14. ^x1168.8 2 1.5 2 10444.3 9254.2 (17-) 1190.4 2 9.8 3 $(19)^{-}$ R=1.49 7. 1.7 3 14293.5 1215.8 2 (23^{-}) 13077.7 (21-) 1225.1 2 1.1 2 9134.9 7909.9 (15)+ $(16)^{-}$ R=0.82 21. 1240.1 2 1.2 2 14293.5 $13053.4(22^{-})$ R=0.73 18. (23^{-}) 1253.8 2 2.8 28411.2 $(16)^{+}$ 7157.6 (14)+ E2 R=1.88 23. 7773.1 (15)+ E2 1268.5 2 2.5 29041.7 $(17)^{+}$ R=1.92 27. 1.5 2 9789.2 R=0.68 11. 1288.0 2 (17^{-}) 8501.5 (15) 1295.5 2 5.1.3 7909.9 $(15)^{+}$ 6614.4 (13)+ R=1.30 13. 1344.0 2 10.2 3 8501.5 7157.6 (14)+ R=1.01 5. $(15)^{-}$ 3991.2 1347.1 2 100.0 6 $(10)^+$ 2644.1 8+ E2 R=1.46 2. (22⁻,23⁻) 1392.6 2 3.1 4 15289.4 13896.9 (21-) R=1.06 21. 12484.1 (20-,21-) 1412.9 2 0.9 4 13896.9 (21^{-}) (E2)[#] 1430.7 2 24.1 5 1430.71 2^{+} $0.0 \ 0^+$ R=1.20 5. 0.6 3 2498.0 6+ 1432.1 2 3930.1 (8^+) 1477.9 2 4.0216767.4 $(24^{-}, 25^{-})$ 15289.4 (22-,23-) R=1.29 9. 1553.2[@] 2 3.0[@] 2 4197.3 $(9)^{-}$ 2644.1 8+ R=1.07 10. Iγ and R for 1553.2+1554.0. $1554.0^{@}2$ 3.0[@] 2 18321.4 16767.4 (24-,25-) R=1.07 10. $(25^{-}, 26^{-}, 27^{-})$ I γ and R for 1553.2+1554.0. 1582.8 2 0.9 3 8501.5 $6918.9(13^{-})$ $(15)^{-}$ 1641.0 2 1.1 2 6357.6 (12^{+}) 4716.6 (12)+ R=1.37 38. 1691.0 2 $0.4\ 2$ 9464.0 7773.1 (15)+ (16^{-}) 1718.3 2 0.6 3 10129.4 8411.2 (16)+ (17^{-}) 1764.3 2 1.2 2 8039.4 (14^{+}) $6275.1 (12^+)$ R=1.80 56. (20⁺,21⁺) (12⁺) 1795.3 2 0.6 2 13247.0 11451.7 (19+) 3.3 3 6357.6 4489.1 (11) R=0.76 10. 1868.5 2 2.2 2 12922.8 11041.8 (20) R=1.18 19. 1881.3 2 (20^{-}) 6614.4 1897.9 2 48.3 6 $(13)^{+}$ 4716.6 (12)+ M1 R=1.00 2. x1907.1 2 1.1 2 2011.6 2 5.2 3 13053.4 (22^{-}) 11041.8 (20)-R=1.40 13. 2035.8 2 1.9 2 13077.7 11041.8 (20) R=0.73 14. (21^{-}) 2039.9 2 2.8 2 12484.1 10444.3 (19) R=1.16 36. $(20^{-}, 21^{-})$ 0.6 3 12077.2 $(20^+, 21^+)$ 9921.0 (19)+ 2156.2 2 2200.4 2 13.0 3 7768.3 $(13)^{-}$ 5567.8 (13) R=1.67 8. 2283.8 2 (12^{+}) 3.1 3 6275.1 3991.2 (10)+ R=1.03 14. 12922.8 (20^{-}) 2377.6 2 1.9 2 10544.8 (18-) R=1.19 21. 7970.0 2402.0 2 5.5 3 $(14)^{-}$ 5567.8 (13) R=0.40 4. 2410.0 2 1.0 2 11451.7 (19^{+}) 9041.7 (17)+ R=1.27 36. 2430.0 2 1.0 2 6918.9 (13^{-}) 4489.1 (11) 2440.8 2 1.0 2 7157.6 $(14)^+$ $4716.6 (12)^{+}$ E2 2508.6 2 0.9 3 12429.6 $(20^+, 21^+)$ 9921.0 (19)+ 6.5 3 5567.8 (13) R=1.71 12. 2565.4 2 8133.2 $(15)^{-}$ 2584.5 2 12.3 *3* 8152.3 $(14)^{-}$ 5567.8 (13) R=0.86 4. 15.3 3 8271.8 $(14)^{-}$ 5567.8 (13) M1R=0.93 4. 2704.1 2 0.7 2 15289.4 (22⁻,23⁻) 2805.2 2 12484.1 (20-,21-) (21^{-}) 2854.7 2 0.62 13896.9 11041.8 (20)-2897.1 2 0.7 2 13938.8 $(21^{-}, 22^{-})$ 11041.8 (20) 0.7 212940.0 R=0.58 24. 3019.0 2 (20^{+}) 9921.0 (19)+

Continued on next page (footnotes at end of table)

$(HI,xn\gamma)$ 1994Ro08,1999Ju03 (continued)

$\gamma(^{94}Ru)$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
3184.8 2	0.5 2	14226.7	(21 ⁻)	11041.8	$(20)^{-}$	R=0.60 21.
3322.7 2	0.6 1	8039.4	(14^{+})	4716.6	$(12)^{+}$	R=1.85 48.
3452.6 2	0.7 2	13896.9	(21^{-})	10444.3	$(19)^{-}$	R=1.24 57.
3632.9 2	0.4 1	14674.8	$(21^{-}, 22^{-})$	11041.8	$(20)^{-}$	R=0.71 <i>30</i> .
3702.8 2	0.4 1	13623.8	(21^{+})	9921.0	$(19)^{+}$	R=1.46 52.
3763.7 2	0.3 1	14805.7	(21 ⁻ ,22 ⁻)	11041.8	$(20)^{-}$	

[†] From 1994Ro08.

[‡] From Asymmetry Ratio R (1994Ro08). R=0.5-1.1 for d and 1.1-2.5 for Q. Additionally γ decay pattern was used. E1 only for [#] From $\gamma(\theta)$ (1971Le19). [@] Multiply placed with undivided intensity.

 $x \gamma$ ray not placed in level scheme.

 $^{94}_{44}$ Ru $_{50}$

