⁹⁵Pd β⁺p decay (13.3 s) 1982No06,1982Ku15

History

Type Author Citation Literature Cutoff Date

Full Evaluation D. Abriola(a), A. A. Sonzogni NDS 107, 2423 (2006)

1-Jan-2006

Parent: 95 Pd: E \approx 2000; J^{π} =(21/2⁺); $T_{1/2}$ =13.3 s 3; $Q(\beta^{+}p)$ =5.13×10³ SY; $\%\beta^{+}p$ decay=0.90 16

All information is from 1982No06, except as noted. See 58 Ni(40 Ca,n2p) in (HI,xn γ) for experimental details.

The singles proton spectrum and delayed py-coincidence spectrum are the same within statistics indicating that the contamination of the proton spectrum by other β -delayed proton emitters is small and the final state in 94 Ru populated after proton emission is the 2645. Feeding of other states in 94 Ru was not observed by 1982No06.

From the prompt py-coincidence spectrum, feeding of higher excited states is <20% for each of them compared to the feeding of the (8^+) state.

⁹⁴Ru Levels

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$		
0	0+	51.8 min 6		
1430.7	2+			
2187	4+			
2498	6+	65 ns 2		
2645	8+	71 μ s 4		

[†] From Adopted Levels.

 $\gamma(^{94}Ru)$

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} ‡ $^{\textcircled{@}}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α <mark>&</mark>	Comments
146.3	74.91	2645	8+	2498	6+	E2	0.335	α =0.335; α (K)=0.277; α (L)=0.0471; α (M)=0.00873; α (N+)=0.00155
311.6 756	97.68 100	2498 2187	6 ⁺ 4 ⁺	2187 1430.7	4 ⁺	E2 (E2)	0.0237	α =0.0237; α (K)=0.02039; α (L)=0.00270; α (M)=0.00050
1430.7	100	1430.7	2+	0	0+	(E2)		

[†] From py-coincidence spectrum. No other γ 's were observed by 1982No06.

Delayed Protons (94Ru)

$$\frac{E(p)}{4.5 \times 10^3} \quad \frac{E(^{94}Ru)}{2645} \quad \frac{I(p)}{100}$$

 $^{^{\}ddagger}$ From the adopted branching ratios and I(p)=100 to (8⁺) state.

[#] From adopted gammas.

[®] For absolute intensity per 100 decays, multiply by 0.0090 16.

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[†] For absolute intensity per 100 decays, multiply by 0.0090 16.

⁹⁵Pd β⁺p decay (13.3 s) 1982No06,1982Ku15

Legend

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

