⁵⁸Ni(⁴⁰Ca,3pnγ) **1994Ar33**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 107, 2423 (2006)	1-Jan-2006			

E=180 MeV. Measured E γ , I γ , $\gamma\gamma$ and $\gamma(\theta)$ using 15 HPGe detectors situated in three rings of the NORDBALL frame.

⁹⁴Rh Levels

E(level) [†]	J ^π @	$T_{1/2}^{\&}$	E(level) [†]	J ^π @
x+0.0 [‡]	(8 ⁺)	25.8 s 2	x+7221.8 [‡] 3	(18 ⁺)
x+576.47 16	(9 ⁺)		x+7454.2 [#] 4	(19 ⁻)
x+1279.74 [‡] 16	(10^{+})		x+7568.5 4	(19 ⁻)
x+1896.43 [‡] 25	(12^{+})		x+7682.1 3	(19 ⁺)
x+1975.86 ^{#} 25	(11^{-})		x+7714.2 [‡] 4	(19 ⁺)
x+2538.6 [#] 3	(12 ⁻)		x+8132.8 4	(19 ⁺)
x+2546.6 [‡] 3	(13 ⁺)		x+8224.5 4	(20+)
x+2740.6 [#] 3	(13 ⁻)		x+8372.9 4	(20 ⁻)
x+3120.7 [‡] 3	(14^{+})		x+8430.0 4	(20 ⁻)
x+3164.9 [‡] 3	(15^{+})		x+8553.5 [‡] 4	(20^{+})
x+3864.8 [#] 3	(15 ⁻)		x+8724.9 [‡] 4	(21^{+})
x+4396.4 [#] 3	(17^{-})		x+8752.9 4	$(20, 21^+)$
x+4498.4 [‡] 3	(17^{+})		x+8789.7 [#] 4	(21 ⁻)
x+4642.7 <i>3</i>	(16 ⁻)		x+9096.7 [#] 4	(21 ⁻)
x+6447.0 4	(18 ⁻)		x+9795.3 [#] 4	(22 ⁻)
x+6566.4 3	(19 ⁻)		x+10104.6 [‡] 4	(23 ⁺)
x+6699.7 <i>3</i>	(18 ⁻)		x+10425.9 [#] 4	(23 ⁻)

[†] From least-squares fit to $E\gamma$, assuming $\Delta E\gamma$ =0.2 keV for each γ ray. 1994Ar33 quote 0.2 keV to 1 keV uncertainty based on intensity.

[‡] Band(A): γ cascade based on (8⁺).

[#] Band(B): γ cascade based on (11⁻).

^(e) From $\gamma\gamma(\theta)$ and band patterns, with the assumption that the lowest energy level observed in this experiment is the (8⁺) isomer. [&] From Adopted Levels.

 $\gamma(^{94}\text{Rh})$

Asymmetry ratio $R=2I(143^{\circ})/[I(79^{\circ})+I(101^{\circ})]$.

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
44.2 2	4.1 12	x+3164.9	(15^{+})	x+3120.7	(14^{+})	
171.6 2	5.0 7	x+8724.9	(21^{+})	x+8553.5	(20^{+})	R=0.73 18.
201.9 2	73 <i>3</i>	x+2740.6	(13^{-})	x+2538.6	(12^{-})	R=0.87 4.
246.0 2	6.0 10	x+4642.7	(16^{-})	x+4396.4	(17^{-})	R=0.93 23.
306.6 2	31.4 17	x+9096.7	(21^{-})	x+8789.7	(21^{-})	R=0.82 7.
359.6 2	1.9 6	x+8789.7	(21^{-})	x+8430.0	(20^{-})	
416.4 2	2.2 7	x+8789.7	(21^{-})	x+8372.9	(20^{-})	
420.6 2	2.5 7	x+8553.5	(20^{+})	x+8132.8	(19^{+})	
460.2 2	2.8 8	x+7682.1	(19^{+})	x+7221.8	(18^{+})	
492.5 2	9.6 15	x+7714.2	(19^{+})	x+7221.8	(18^{+})	R=0.58 19.
500.2 2	12.0 13	x+8724.9	(21^{+})	x+8224.5	(20^{+})	R=0.77 17.

Continued on next page (footnotes at end of table)

$\gamma(^{94}\text{Rh})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult. [†]	Comments
510.1 2	4.0 14	x+8224.5	(20^{+})	x+7714.2	(19^{+})		
528.4 2	2.0 7	x+8752.9	(20.21^{+})	x+8224.5	(20^{+})		
531.7 2	88 <i>3</i>	x+4396.4	(17^{-})	x+3864.8	(15^{-})		R=1.53 <i>3</i> .
542.3 2	21.0 20	x+8224.5	(20^{+})	x+7682.1	(19^+)		R=0.47.
562.6 2	90 <i>3</i>	x+2538.6	(12^{-})	x+1975.86	(11^{-})		R=0.77 4.
574.0 2	32.1 19	x+3120.7	(14^+)	x+2546.6	(13^{+})		R=0.68 7.
576.4 2	49.7 23	x+576.47	(9 ⁺)	x+0.0	(8^+)		R=0.83 6.
616.7 [‡] 2	74 [‡] 3	x+1896.43	(12 ⁺)	x+1279.74	(10 ⁺)		R=1.69 <i>11</i> for 616.7+618.4. I _v : combined for 616.7+618.4.
618.4 [‡] 2	74 [‡] 3	x+3164.9	(15 ⁺)	x+2546.6	(13 ⁺)	E2	\dot{R} =1.69 <i>11</i> for 616.7+618.4. I _v : combined for 616.7+618.4.
630.3 2	16.8 17	x+10425.9	(23^{-})	x+9795.3	(22^{-})		Ŕ=1.05 <i>18</i> .
650.2 2	53 4	x+2546.6	(13+)	x+1896.43	(12^+)		R=0.89 11.
696.1 2	94 <i>4</i>	x+1975.86	(11^{-})	x+1279.74	(10^{+})	E1	R=0.79 5.
698.3 [‡] 2	21.9 [‡] 22	x+9795.3	(22 ⁻)	x+9096.7	(21 ⁻)		R=1.15 <i>19</i> for 698.3+699.9. I _v : combined for 698.3+699.9.
699.9 [‡] 2	21.9 [‡] 22	x+3864.8	(15 ⁻)	x+3164.9	(15 ⁺)		R = 1.15 19 for 698.3+699.9. Ly: combined for 698.3+699.9.
703.2 2	51.3 23	x+1279.74	(10^{+})	x+576.47	(9^{+})		R=0.70 5.
764.9 2	3.1 9	x+2740.6	(13-)	x+1975.86	(11^{-})		
777.9 2	3.6 10	x+4642.7	(16 ⁻)	x+3864.8	(15-)		
839.6 2	5.7 12	x+8553.5	(20^{+})	x+7714.2	(19^{+})		
910.9 2	3.7 10	x+8132.8	(19^{+})	x+7221.8	(18^{+})		
975.6 2	2.6 7	x+8430.0	(20^{-})	x+7454.2	(19 ⁻)		
982.3 2	6.5 20	x+7682.1	(19^{+})	x+6699.7	(18^{-})		
1115.9 2	5.9 14	x+7682.1	(19 ⁺)	x+6566.4	(19 ⁻)		R=1.64 <i>32</i> .
1124.1 2	89 4	x+3864.8	(15 ⁻)	x+2740.6	(13 ⁻)		R=1.64 11.
1279.8 2	100 3	x+1279.74	(10^{+})	x+0.0	(8^{+})		R=1.54 9.
1329.5 2	2.8 9	x+10425.9	(23 ⁻)	x+9096.7	(21^{-})		
1333.4 2	31.8 18	x+4498.4	(17^{+})	x+3164.9	(15^{+})		R=1.46 20.
1335.6 2	20.5 17	x+8789.7	(21 ⁻)	x+7454.2	(19 ⁻)		R=1.49 41.
1379.7 2	10.1 24	x+10104.6	(23+)	x+8724.9	(21^{+})		R=2.6 <i>12</i> .
1806.1 2	2.0 9	x+8372.9	(20^{-})	x+6566.4	(19^{-})		
2050.6 2	4.6 19	x+6447.0	(18)	x+4396.4	(17)		
2056.5 2	1.7 9	x+6699.7	(18^{-})	x+4642.7	(16^{-})		D 100 34
2170.2 2	20.3 20	x+6566.4	(19)	x+4396.4	(1/)		R=1.92 36.
2223.5 2	5.2 20	x+8/89./	(21)	x+6566.4	(19)		D 0.95 20
2503.0 2	1.5 10	x+0099./	(18)	x+4396.4	(1/)		K=0.83 20.
2330.0 2	1.9 10	x+9096./	(21)	x + 0500.4	(19)		\mathbf{P}_{-0} 22 20
2123.4 2	12.2 13	x + 7454.2	(10^{-})	x + 4498.4	(17^{-})		$K = 0.82 \ 20.$ $D = 1.20 \ 21$
2172 1 2	18./1/	X+/404.2	(19)	x+4396.4	(17)		K=1.30 21.
3172.12 318363	1.3 /	X+/J08.J	(19) (10^+)	x+4390.4	(17)		P = 1.38,55
5105.0 2	5.0 11	AT/002.1	(17)	AT4470.4	(1)		K-1.50 JJ.

[†] From Asymmetry Ratio R (1994Ar33). R=0.5-1.9 for E1,M1 and 1.0-3 for E2.
[‡] Multiply placed with undivided intensity.

⁵⁸Ni(⁴⁰Ca,3pnγ) 1994Ar33

	Level Scheme	Legend
	Intensities: Relative I & Multiply placed: undivided int	ensity given $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$
(23 ⁻) (23 ⁺)	233 233 233 233 233 233 233 233	x+10425.9 x+10104.6
$\frac{(21^{-})}{(20,21^{+})}$	25 25 25 25 25 25 25 25 25 25	x+9096.7 x+8789.7 x+8752.9
$\begin{array}{c} (21^+) \\ (20^+) \\ (20^-) \\ (20^-) \\ (20^+) \end{array}$		x+8724.9 x+8553.5 x+8430.0 x+8372.9 x+8372.9 x+8372.9 x+8372.9
$\frac{(10^+)}{(19^+)}$		x+8224.5 x+8132.8 x+8132.8 x+8132.8 x+7714.2 x+7682.1
(19 ⁻) (19 ⁻) (18 ⁺)		x+7568.5 x+7454.2 x+7454.2
(18 ⁻) (19 ⁻)	• •	x+6699.7 x+6566.4
$\frac{(17^+)}{(17^-)}$		x+4498.4
(17)		★ x+4396.4

 $^{94}_{45}\text{Rh}_{49}$

 $^{94}_{45}\text{Rh}_{49}$

⁵⁸Ni(⁴⁰Ca,3pnγ) 1994Ar33

 $^{94}_{45}\text{Rh}_{49}$