58 Ni(40 Ca,2p2n γ) 2003Ma24

History

Type Author Citation Literature Cutoff Date
Full Evaluation D. Abriola(a), A. A. Sonzogni NDS 107, 2423 (2006)

1-Jan-2006

E=135 MeV, measured E γ , I γ , $\gamma\gamma$, using the GASP detector array comprised of 40 Compton-suppressed Ge detectors in conjuction with an 80 element BGO inner ball where the six elements of the most forward ring were replaced by the n-ring detector consisting of six liquid scintillator detectors. The ISIS Si ball, a 40-element Δ E-E telescope array, was also used.

94Pd Levels

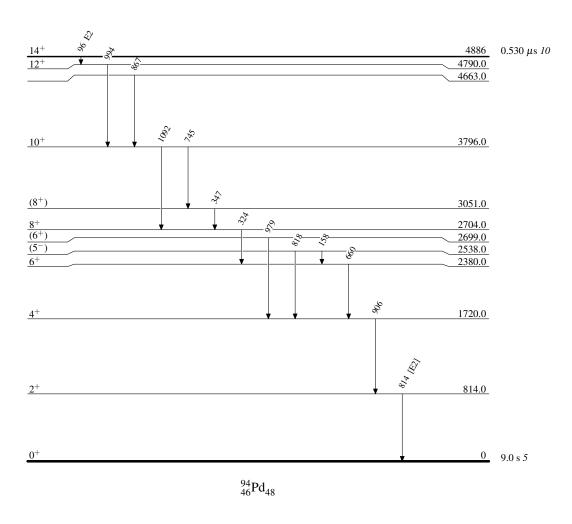
E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\bigcirc}$	E(level) [†]	$J^{\pi \#}$	E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{@}$
0_{\ddagger}	0_{+}	9.0 s 5	2538.0 16 2699.0 17 2704.0 [‡] 19 3051.0 21	(5 ⁻)	3796.0 [‡] 21	10 ⁺	
814.0 [‡] <i>10</i>	2+		2699.0 <i>17</i>	(6^{+})	4663.0 23		
1720.0 [‡] <i>14</i>	4+		2704.0 [‡] 19	8+	4790.0 [‡] 23	12+	
2380.0 [‡] <i>16</i>	6+		3051.0 <i>21</i>	(8^{+})	4886 [‡] <i>3</i>	14+	$0.530~\mu s~10$

[†] From least-squares fit to Ey assuming Δ Ey=1 keV.

γ (94Pd)

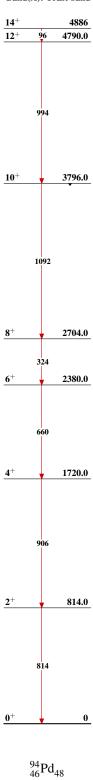
E_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
96	4886	14+	4790.0	12+	E2	1.63	$\alpha(\exp)=1.9 \ 4$ $\alpha=1.63; \ \alpha(K)=1.25 \ 4; \ \alpha(L)=0.311 \ 10; \ \alpha(M)=0.0597 \ 18; \ \alpha(N+)=0.0104$
							u=1.03, u(K)=1.23 7, $u(L)=0.311$ 10, $u(M)=0.037$ 10, $u(M+)=0.010$ 4
							Mult.: from $\alpha(\exp)=1.9$ 4, which was determined from intensity balance.
158	2538.0	(5^{-})	2380.0	6+			•
324	2704.0	8+	2380.0	6+			
347	3051.0	(8^{+})	2704.0	8+			
660	2380.0	6+	1720.0	4+			
745	3796.0	10+	3051.0	(8^{+})			
814	814.0	2+	0	0+	[E2]		
818	2538.0	(5^{-})	1720.0	4+			
867	4663.0		3796.0	10^{+}			
906	1720.0	4+	814.0	2+			
979	2699.0	(6^{+})	1720.0	4+			
994	4790.0	12+	3796.0	10^{+}			
1092	3796.0	10 ⁺	2704.0	8+			

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.


[‡] Band(A): yrast band.

[#] As given by 2003Ma24, based on $\gamma(\theta)$, systematics of N=48 nuclei, and supported by shell model calculations.

[®] From Adopted Levels.


⁵⁸Ni(⁴⁰Ca,2p2nγ) 2003Ma24

Level Scheme

$\frac{58}{\text{Ni}}(^{40}\text{Ca},2\text{p2n}\gamma)$ 2003Ma24

 $Band(A)\hbox{:}\ Yrast\ band$

