## <sup>94</sup>Zr(**p**,**n**γ) **1980Gu24,1979Mi08**

|                 | History                       |                      |                        |  |  |  |  |  |  |
|-----------------|-------------------------------|----------------------|------------------------|--|--|--|--|--|--|
| Туре            | Author                        | Citation             | Literature Cutoff Date |  |  |  |  |  |  |
| Full Evaluation | D. Abriola(a), A. A. Sonzogni | NDS 107, 2423 (2006) | 1-Jan-2006             |  |  |  |  |  |  |

## <sup>94</sup>Nb Levels

1980Gu24: E=2.7 MeV and 3.3 MeV. Enriched target. Ge(Li). Low-energy hyperpure germanium spectrometer. Measured E $\gamma$ , I $\gamma$ . 1979Mi08: E=5.06 MeV and 5.27 MeV. Enriched target. Ge(Li), FWHM=0.5 keV at 50 keV. Deduced  $\alpha$ (exp) from absolute electron and  $\gamma$  counting, electrons measured with mini-orange spectrometer. Measured I $\gamma$  on/off the d<sub>5/2</sub> IAR to assign parity (on

1976Ha04: E=1.69 MeV to 3.70 MeV. Enriched target. Ge(Li), FWHM=2.0 keV at 1.33 MeV and 1.0 keV at 99 keV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ , excitation functions. Deduced  $J^{\pi}$  from Hauser-Feshbach calculations of  $\sigma$ (E).

1976Fe10: E=1.7 MeV to 3.0 MeV. Enriched target. Ge(Li), FWHM=2.5 keV at 1.33 MeV. Measured E $\gamma$ , n- $\gamma$  coincidences,  $\gamma\gamma$ , excitation functions.

| E(level)        | $J^{\pi \dagger}$ | E(level) | $J^{\pi \dagger}$ | E(level)        | $J^{\pi \dagger}$ | E(level)         | $J^{\pi \dagger}$ |
|-----------------|-------------------|----------|-------------------|-----------------|-------------------|------------------|-------------------|
| 0.0             | 6+                | 312.5 19 | $(4,5)^+$         | 785.4 19        | (3)+              | 979.5 19         | (2)               |
| 41.4 <i>19</i>  | 3+                | 334.7 19 | $(3)^{+}$         | 793.1 19        | $(3,4)^+$         | 1163.5 <i>15</i> | $(3^+, 4, 5^+)$   |
| 58.9 <i>19</i>  | $(4)^+$           | 396.7 19 | (3)-              | 818.1 <i>19</i> | (3)-              | 1182.9 <i>21</i> |                   |
| 113.38 8        | $(5)^{+}$         | 450.7 19 | (3)-              | 901.4? 21       |                   | 1334.7? 16       | $(3^+, 4, 5^+)$   |
| 140.8 <i>19</i> | $(2)^{-}$         | 631.8 4  | $(4)^{+}$         | 924.4 19        | $(2^{+})$         |                  |                   |
| 302.1 19        | (2)-              | 666.2 19 | (3)+              | 933.7? 18       |                   |                  |                   |

<sup>†</sup> From Adopted Levels, in general good agreement with values from 1980Gu24 and 1979Mi09.

$$\gamma(^{94}\text{Nb})$$

 $\alpha$ (K)exp,  $\alpha$ (L+...)exp are from 1979Mi08.

resonance enhances negative parity states).

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | δ#      | α <sup>C</sup> | Comments                                                                                                                                                                                                                                                                                                                                                         |
|------------------------|-------------------------|---------------|----------------------|------------------------------------|--------------------|---------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 99.42 6                | 100 10                  | 140.8         | (2)-                 | 41.4 3+                            | E1                 |         | 0.122          | $\begin{array}{l} \alpha(K) \exp = 0.116 \ 8 \\ \alpha = 0.122; \ \alpha(K) = 0.1074; \ \alpha(L) = 0.01223; \\ \alpha(M) = 0.00214; \ \alpha(N+) = 0.00037 \\ \alpha(K) \exp, \alpha(L+) \exp: \ From \\ \text{isomadiziative laying:} \ the \ pulsed \ beam. \\ \alpha(K) \exp = 0.109 \ 10 \ from \ in-beam \\ measurement. \end{array}$                      |
| 113.38 8<br>×150.62 0  | 3.8 5                   | 113.38        | (5)+                 | 0.0 6+                             | (M1)               |         | 0.160          | $\alpha$ (K)exp=0.106 <i>10</i><br>$\alpha$ =0.160; $\alpha$ (K)=0.1405; $\alpha$ (L)=0.01637;<br>$\alpha$ (M)=0.00290; $\alpha$ (N+)=0.00052<br>$\alpha$ (K)exp: value corrected for the<br>contribution of the L+M line of a<br>lower-energy transition using the<br>theoretical coefficient for the L+M<br>conversion and the associated K-line<br>intensity. |
| 161.26 4               | 40 4                    | 302.1         | (2)-                 | 140.8 (2)-                         | M1+E2              | 0.31 10 | 0.075 9        | $\alpha$ (K)exp=0.064 6<br>$\alpha$ =0.075 9; $\alpha$ (K)=0.064 7; $\alpha$ (L)=0.0079<br>11; $\alpha$ (N+)=0.00025 4<br>$\delta$ : +0.20 15 or -4.3 29 from n- $\gamma(\theta)$<br>angular correlations (1979Fe10).                                                                                                                                            |

|                                                |                                      |                        | 94                                     | Zr(p,nγ          | ) 19                                 | 80Gu24,197         | 9Mi08 (con | tinued)        |                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------|--------------------------------------|------------------------|----------------------------------------|------------------|--------------------------------------|--------------------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\gamma$ ( <sup>94</sup> Nb) (continued)       |                                      |                        |                                        |                  |                                      |                    |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $E_{\gamma}^{\dagger}$                         | $I_{\gamma}^{\ddagger}$              | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                   | $\mathbf{E}_{f}$ | $\mathrm{J}_f^\pi$                   | Mult. <sup>#</sup> | δ#         | α <sup>C</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 193.96 <i>13</i><br>253.6 <sup>@</sup> 3       | 1.02 16                              | 334.7<br>312.5         | $(3)^+$<br>$(4,5)^+$                   | 140.8<br>58.9    | $(2)^{-}$<br>$(4)^{+}$               | M1                 |            | 0.0190         | $\alpha$ (K)exp=0.0171 <i>19</i><br>$\alpha$ =0.0190; $\alpha$ (K)=0.01653;                                                                                                                                                                                                                                                                                                                                                    |
| 255.88 7                                       | 6.7 7                                | 396.7                  | (3)-                                   | 140.8            | (2)-                                 | M1(+E2)            | 0.37 18    | 0.0212 25      | $\alpha$ (L)=0.00188<br>$\alpha$ (K)exp=0.0184 <i>17</i><br>$\alpha$ =0.0212 <i>25</i> ; $\alpha$ (K)=0.0183 <i>21</i> ;<br>$\alpha$ (L)=0.0022 <i>3</i>                                                                                                                                                                                                                                                                       |
| 293.21 8                                       | 30 3                                 | 334.7                  | (3)+                                   | 41.4             | 3+                                   | M1                 |            | 0.0132         |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 301.9 <sup>&amp;</sup> <i>f</i> 17<br>309.86 6 | 16.8 <i>17</i>                       | 933.7?<br>450.7        | (3)-                                   | 631.8<br>140.8   | (4) <sup>+</sup><br>(2) <sup>-</sup> | M1                 |            | 0.0114         | $\alpha$ (K)exp=0.0113 <i>10</i><br>$\alpha$ =0.0114; $\alpha$ (K)=0.00994;<br>$\alpha$ (L)=0.00113<br>$\alpha$ (K)exp: value corrected for the<br>contribution of the L+M line<br>of a lower-energy transition<br>using the theoretical<br>coefficient for the L+M<br>conversion and the associated<br>K-line intensity.<br>$\delta$ : $-0.3 < \delta < +0.7$ from $n - \gamma(\theta)$<br>angular correlations<br>(1970Fe10) |
| 313.54 <sup><i>a</i></sup> 20<br>337.71 28     | 2.9 <i>4</i><br>2.3 <i>4</i>         | 979.5<br>396.7         | (2)<br>(3) <sup>-</sup>                | 666.2<br>58.9    | $(3)^+$<br>$(4)^+$                   | E1                 |            | 0.0038         | $\alpha(K) \exp[=0.0034 7]$<br>$\alpha=0.0038$                                                                                                                                                                                                                                                                                                                                                                                 |
| 364.4 <i>4</i><br>458.39 28                    | 0.8 <i>3</i><br>2.4 <i>3</i>         | 666.2<br>793.1         | (3) <sup>+</sup><br>(3,4) <sup>+</sup> | 302.1<br>334.7   | (2) <sup>-</sup><br>(3) <sup>+</sup> | M1                 |            | 0.0044         | $\alpha$ (K)exp=0.0041 5<br>$\alpha$ =0.0044<br>$\delta$ : +0.32 15 or +1.7 5 from<br>n- $\gamma(\theta)$ angular correlations if<br>J=4 (1979Fe10).                                                                                                                                                                                                                                                                           |
| 474.3 5<br>483.42 <sup>e</sup> 21              | 0.64 <i>16</i><br>6.5 <sup>e</sup> 8 | 924.4<br>785.4         | $(2^+)$<br>$(3)^+$                     | 450.7<br>302.1   | $(3)^{-}$<br>$(2)^{-}$               | E1                 |            | 0.0015         | $\alpha$ (K)exp=0.0018 5<br>$\alpha$ =0.0015<br>$\delta$ : +0.11 10 or +2.9 15 from<br>n- $\gamma(\theta)$ angular correlations<br>(1979Fe10)                                                                                                                                                                                                                                                                                  |
| 483.42 <sup>e</sup> 21                         | 6.5 <sup>e</sup> 8                   | 818.1                  | (3)-                                   | 334.7            | (3)+                                 | E1                 |            | 0.0015         | $\alpha(K) \exp = 0.0018 5$<br>$\alpha = 0.0015$                                                                                                                                                                                                                                                                                                                                                                               |
| 504.7 <sup>&amp;f</sup> 10                     |                                      | 901.4?                 |                                        | 396.7            | (3)-                                 |                    |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 518.4 <sup><sup>w</sup></sup> 4                |                                      | 631.8                  | $(4)^{+}$                              | 113.38           | $(5)^{+}$                            | M1                 |            | 0.0033         | $\alpha$ (K)exp=0.0025 8<br>$\alpha$ =0.0033                                                                                                                                                                                                                                                                                                                                                                                   |
| 525.64 24                                      | 17.5 18                              | 666.2                  | (3)+                                   | 140.8            | (2)-                                 | E1                 |            | 0.0012         | $\alpha(K)\exp=0.0009 \ 2$<br>$\alpha=0.0012$<br>$\delta: -2.24 < \delta < -0.3 \text{ from } n-\gamma(\theta)$<br>angular correlations<br>(1979Fe10).                                                                                                                                                                                                                                                                         |
| 621.8 6                                        | 0.76 20<br>1.8 2                     | 924.4                  | (2 <sup>+</sup> )                      | 302.1            | (2) <sup>-</sup>                     |                    |            |                | $ δ: 0.53 < \delta < 1.32 \text{ from n-} γ(θ) $ angular correlations                                                                                                                                                                                                                                                                                                                                                          |

Continued on next page (footnotes at end of table)

## <sup>94</sup>Zr(p,nγ) 1980Gu24,1979Mi08 (continued)

## $\gamma$ (<sup>94</sup>Nb) (continued)

| $E_{\gamma}^{\dagger}$       | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathbf{J}_f^{\pi}$ | Comments                                                                     |
|------------------------------|-------------------------|------------------------|----------------------|--------|----------------------|------------------------------------------------------------------------------|
|                              |                         |                        |                      |        |                      | (1979Fe10) if mult.=E1+M2, J=3 in conflict to the adopted value.             |
| x639.2 6                     | 8.5 10                  |                        |                      |        |                      |                                                                              |
| 644.2 <sup>d</sup> 4         | ≤7                      | 785.4                  | $(3)^{+}$            | 140.8  | $(2)^{-}$            |                                                                              |
| 644.2 <sup>d</sup> 4         | <7                      | 979.5                  | (2)                  | 334.7  | $(3)^+$              |                                                                              |
| 678 <sup>b</sup> f           |                         | 818 1                  | $(3)^{-}$            | 140.8  | $(2)^{-}$            |                                                                              |
| $751\frac{bf}{f}$            |                         | 793.1                  | $(34)^+$             | 41.4   | 3+                   |                                                                              |
| 776.3.5                      | 6.07                    | 818.1                  | (3, -)               | 41.4   | 3+                   | $\delta$ : +0.04 12 or +3.7 11 from n- $\gamma(\theta)$ angular correlations |
|                              |                         |                        | (-)                  |        | -                    | (1979Fe10) if mult.=M1+E2, J=4 in conflict to the adopted                    |
|                              |                         |                        |                      |        |                      | value.                                                                       |
| 783.2 8                      | 8.6 11                  | 924.4                  | $(2^{+})$            | 140.8  | $(2)^{-}$            |                                                                              |
| <sup>x</sup> 812.1 9         | 1.62 28                 |                        |                      |        |                      |                                                                              |
| 837.3 8                      | 1.4 5                   | 979.5                  | (2)                  | 140.8  | $(2)^{-}$            |                                                                              |
| 880.8 10                     | 1.96 20                 | 1182.9                 |                      | 302.1  | $(2)^{-}$            |                                                                              |
| <sup>x</sup> 894.1 11        | 1.44 21                 |                        |                      |        |                      |                                                                              |
| <sup>x</sup> 911.9 <i>10</i> | 2.1 3                   |                        |                      |        |                      |                                                                              |
| <sup>x</sup> 935.5 12        | ≤4.3                    |                        |                      |        |                      |                                                                              |
| <sup>x</sup> 945.4 12        | 2.7 5                   |                        |                      |        |                      |                                                                              |
| 1042.1 14                    | 3.8 6                   | 1182.9                 |                      | 140.8  | $(2)^{-}$            |                                                                              |
| 1050.1 15                    | 0.9 <i>3</i>            | 1163.5                 | $(3^+, 4.5^+)$       | 113.38 | $(5)^{+}$            |                                                                              |
| 1106.1 15                    | 3.8 6                   | 1163.5                 | $(3^+, 4.5^+)$       | 58.9   | $(4)^+$              |                                                                              |
| 1120.5 15                    | 2.5 6                   | 1163.5                 | $(3^+, 4, 5^+)$      | 41.4   | 3+                   |                                                                              |
| <sup>x</sup> 1206.8 16       | 2.1 4                   |                        | (* , . , = )         |        | -                    |                                                                              |
| 1221.3 <sup>f</sup> 16       | 3.4 7                   | 1334.7?                | $(3^+, 4, 5^+)$      | 113.38 | $(5)^{+}$            |                                                                              |

<sup>†</sup> From 1980Gu24, if not noted otherwise.

<sup>±</sup> Relative intensities at E=3.3 MeV,  $\theta$ =55°.

<sup>#</sup> From  $\alpha$ (K)exp,  $\alpha$ (L+...)exp.

<sup>@</sup> From 1979Mi08.

<sup>&</sup> From 1976Ha04. Not seen in other experiments.

<sup>*a*</sup> A  $\gamma$  was seen at 312 keV *I* by 1979Mi08 and tentatively placed from the 311-keV level. The evaluator assumes that this  $\gamma$  is identical to the 313.5 $\gamma$  seen by 1980Gu24.

<sup>b</sup> From 1976Fe10. Not seen in other experiments.

<sup>*c*</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>d</sup> Multiply placed.

<sup>e</sup> Multiply placed with undivided intensity.

<sup>f</sup> Placement of transition in the level scheme is uncertain.

 $x \gamma$  ray not placed in level scheme.



 $^{94}_{41}\rm{Nb}_{53}$ 

4