⁹⁴Tc ε decay (293 min) 1969Ba09

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 107, 2423 (2006)	1-Jan-2006

Parent: ⁹⁴Tc: E=0.0; $J^{\pi}=7^+$; $T_{1/2}=293 \text{ min } I$; $Q(\varepsilon)=4256 \ 4$; $\%\varepsilon+\%\beta^+$ decay=100.0

1969Ba09: Ge(Li), FWHM=3.1 keV and 2.4 keV at 1.33 MeV. NaI. Measured E γ , I γ , $\gamma\gamma$.

1979Ka22: Ge(Li), FWHM=1.9 keV at 1.33 MeV. NaI(Tl). Measured $\gamma\gamma(\theta)$.

1977Be38: Ge(Li), FWHM=3 keV at 1.17 MeV. NaI(Tl). Measured $\gamma\gamma(\theta)$, $\gamma\gamma(\text{pol})$ correlation.

1977Be19: Ge(Li). Measured $\gamma(\theta,H,t)$ from low-temperature oriented nuclei. Deduced mult., δ .

1968Ar06: Ge(Li), NaI(Tl). Measured $E\gamma$, $I\gamma$, $\gamma\gamma$.

1971Br54: Ge(Li), NaI(Tl). Measured $x\gamma$ coin.

Other: 1968Ka25.

The decay scheme is based mainly on 1969Ba09 with the following modifications:

In accordance with $(\alpha, 2n\gamma)$, the 532 and 449 γ 's have been placed deexciting the 2956 and 2873 levels, respectively, instead of introducing new levels at 2106 keV and 3614 keV. The 1509 γ could then not be placed in the level scheme.

⁹⁴Mo Levels

E(level) [‡]	$J^{\pi \dagger}$
0	0^{+}
871.05 7	2^{+}
1573.73 10	4^{+}
2423.47 12	6+
2872.7 3	6+
2955.6 <i>3</i>	8+
3165.80 20	6+
3339.57 19	6^{+}

[†] From Adopted Levels.

[‡] From least-squares fit to $E\gamma$.

ε, β^+ radiations

E(decay)	E(level)	Iβ ⁺ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(916 4)	3339.57		7.9 4	5.400 23	7.9 4	εK=0.8674; εL=0.10772 2
(1090 4)	3165.80		3.5 3	5.91 4	3.5 <i>3</i>	εK=0.8681; εL=0.10716 2
(1300 4)	2955.6	0.011 1	4.0 3	6.01 4	4.0 3	av E β =129.0; ε K=0.8665 2; ε L=0.10640 3
(1383 4)	2872.7	0.013 2	1.7 3	6.43 8	1.7 3	av E β =164.6; ε K=0.8625 3; ε L=0.10573 5
(1833 4)	2423.47	10.5 <i>3</i>	70.8 17	5.058 11	81.3 19	av Eβ=358.3; εK=0.7570 17; εL=0.09224 21

[†] Absolute intensity per 100 decays.

γ ⁽⁹⁴Mo)

I γ normalization: Assuming Σ I γ (g.s.)=100%.

Ε _γ ‡	I_{γ} ^{‡#}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α [@]	Comments
83	0.49	2955.6	8+	2872.7	6+	E2	2.39	α =2.39; α (K)=1.88 6; α (L)=0.420 <i>13</i> ; α (M)=0.0761 <i>23</i> ; α (N+)=0.0124 <i>4</i> E _{γ} : from 1971Br54. I _{γ} : from 1971Br54.

Continued on next page (footnotes at end of table)

⁹⁴₄₂Mo₅₂-2

				94 Tc ε de	cay	(293 min) 1	969Ba09 (0	continued)	
						γ (⁹⁴ Mo) (con			
E_{γ}^{\ddagger}	Ι _γ ‡#	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α [@]	Comments
449.2 3	3.3 3	2872.7	6+	2423.47	6+	(M1(+E2))	+0.14 9	0.00510 5	α =0.00510 5; α (K)=0.00443 4; α (L)=0.00050 1 δ : other: 0.0 +2-1 or +0.7 2 from α (A H t) (1077Be19)
532.1 3	2.35 25	2955.6	8+	2423.47	6+	(E2)		0.00400	α =0.00400; α (K)=0.00345 11; α (L)=0.00041 1 δ =-0.10 12 (1979Ka22) for the M1 component of this γ is consistent with Δ J=2 for this transition.
702.67 7	99.7 18	1573.73	4+	871.05	2+	E2		0.00186	$\alpha = 0.00186; \ \alpha(K) = 0.001615; \ \alpha(L) = 0.000191$
742.3 2	1.21 18	3165.80	6+	2423.47	6+	(M1(+E2))	+0.15 7	0.00158	α =0.00158; α (K)=0.00137; α (L)=0.00015 δ : +0.14 +26-48.
849.74 7	95.8 18	2423.47	6+	1573.73	4+	E2(+M3)	-0.04 5	0.00116 4	α =0.00116 4; α (K)=0.00100 3; α (L)=0.00011
871.05 7	100	871.05	2+	0	0^+	E2		0.00108	$\alpha = 0.00108; \ \alpha(K) = 0.00094 \ 3; \ \alpha(L) = 0.00011$
916.10 <i>15</i>	7.6 4	3339.57	6+	2423.47	6+	(M1(+E2))	-0.04 4	0.00099	
1592.1 3	2.25 20	3165.80	6^+ 6^+	1573.73	$4^+_{4^+}$	(E2(+M3))	-0.01 6		
1/05.0 /	0.29 5	5559.51	U	15/5./5	-				

[†] From adopted gammas.
[‡] From 1969Ba09.
[#] For absolute intensity per 100 decays, multiply by 0.999.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

94 Tc ε decay (293 min) 1969Ba09

Decay Scheme

⁹⁴₄₂Mo₅₂