93 Y β^- decay 1973Ta15

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 112, 1163 (2011)	15-Dec-2010

Parent: ⁹³Y: E=0.0; $J^{\pi}=1/2^-$; $T_{1/2}=10.18$ h 8; $Q(\beta^-)=2895 \ 10$; $\%\beta^-$ decay=100.0

Additional information 1.

Others: 1972Oh06, 1972Oh03, 1971Ho15, 1969Ar06, 1968Po06, 1959Kn38.

1973Ta15: Ge(Li); measured $E\gamma$, $I\gamma$, $\gamma\gamma$ coin.

1972Oh06:Ge(Li), Si(Li), plastic, anthracene detectors; measured E γ , I γ , ce(K)(267 γ), $\gamma\gamma$ coin, 679 γ -267 $\gamma(\theta)$. See also 1972Oh03.

1971Ho15:Ge(Li) and NaI detectors; measured E γ , I γ , $\gamma\gamma$ coin.

1969Ar06: Ge(Li); measured E γ , I γ , $\gamma\gamma$ coin.

1968Po06: Ge(Li); measured $E\gamma$, $I\gamma$.

1959Kn38: β spectrometer, NaI; measured E β , E γ , I(267ce(K))/I β , I γ /I β , $\gamma\gamma$ coin.

A total energy release of 2896 39 is calculated for this decay scheme using the RADLST code, In good agreement with Q=2895 10.

93Zr Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	5/2+	1.61×10 ⁶ y 5	$-\frac{1}{8}\beta^{-}=100$
266.87 6	3/2+	1.45 ns 5	J^{π} : not 5/2, from $\gamma\gamma(\theta)$ (1972Oh06).
947.14 7	$1/2^{+}$		
1168.6? 2	$1/2^{+}$		Denoted as uncertain because proposed by 1969Ar06 only.
1425.41 9	$3/2^+, 5/2^+$		
1450.45 8	$(1/2^+, 3/2, 5/2^+)$		
1470.15 8	$(1/2^+, 3/2, 5/2^+)$		
1909.56 11	1/2+		
1918.56 [#] 21	$(1/2, 3/2, 5/2^+)$		
2094.69 [#] 21	$1/2^{+}$		
2184.62 7	$(1/2^+, 3/2)$		
2457.65 15	$(1/2^+, 3/2)$		
2473.84 20			

[†] From least-squaress fit to $E\gamma$.

[‡] From Adopted Levels.

[#] Observed by 1973Ta15 only.

β^- radiations

 β^{-} spectrum measured by 1959Kn38.

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(421 10)	2473.84	0.0114 20	8.44 9	av E β =128.4 36
(437 10)	2457.65	0.26 5	7.14 9	av $E\beta = 134.1 \ 36$
(710 10)	2184.62	1.70 25	7.06 7	av E β =236.5 40
(800 10)	2094.69	0.024 5	9.10 10	av E β =272.2 41
(976 10)	1918.56	0.030 6	9.32 9	av $E\beta = 344.3 \ 42$
(985 10)	1909.56	0.065 10	9.00 7	av $E\beta = 348.1 \ 42$
(1425 10)	1470.15	0.15 3	9.25 9	av $E\beta = 537.4 \ 45$
(1445 10)	1450.45	0.38 6	8.87 7	av $E\beta = 546.1 \ 45$
(1470 10)	1425.41	0.28 4	9.03 7	av E β =557.2 45
(1726 10)	1168.6?	0.005 6	11.1 6	av $E\beta = 672.4 \ 46$

Continued on next page (footnotes at end of table)

⁹³Y β^- decay 1973Ta15 (continued)

 β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(1948 <i>10</i>)	947.14	2.7 5	8.54 9	 av Eβ=773.4 46 av Eβ=1089.5 47 av Eβ=1216.5 47 Eβ from 1983Ia02 (other: 2890 20 (1959Kn38)). β⁻ spectrum has unique first-forbidden shape (1959Kn38).
(2628 <i>10</i>)	266.87	4.9 9	8.82 8	
2880 <i>15</i>	0.0	89.5 16	9.098 ¹ 13	

 † Absolute intensity per 100 decays.

 $\gamma(^{93}{\rm Zr})$

Iγ normalization: 0.0066 11, 0.0081 12, 0.0087 15 from %Iγ=6.4 10, 2.3 3, 1.8 3 for 267γ, 950γ multiplet, 1918γ, respectively (1959Kn38). The weighted average of these is 0.0076 7, but evaluator adopts the fractional uncertainty of the most precise datum to allow for the possibility that the uncertainty in Iγ/Iβ may be largely systematic.

E_{γ}^{\dagger}	I_{γ} [‡] &	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	δ	α^{a}	Comments
266.9 1	976 [†] <i>53</i>	266.87	3/2+	0.0	5/2+	M1+E2	1.2 +12-5	0.025 5	$\alpha(K)\exp=0.022 \ 4$ $\alpha(K)=0.022 \ 4; \ \alpha(L)=0.0027 \ 6;$ $\alpha(M)=0.00047 \ 10; \ \alpha(N+)=6.9\times10^{-5} \ 14$ $\alpha(N)=6.5\times10^{-5} \ 13; \ \alpha(O)=4.0\times10^{-6} \ 7$ $\alpha(K)\exp \ from \ 19720\ h03. \ Other: \ 0.024 \ (1959\ Kn38) \ (from \ I(267ce(K))/I\beta=0.00152 \ and \ I(267\gamma)/I\beta=0.004 \ 10).$
$273.0^{@} 10$ x287.0 10 x241.5 5	9.5 [@] 20 10.0 15 5 0 2	2457.65	(1/2 ⁺ ,3/2)	2184.62	(1/2 ⁺ ,3/2)				E. L.: from 1071Ho15: also reported by
541.5 5	5.9 2								E_{γ}, i_{γ} : from 1971H015; also reported by 1969Ar06.
x387.5 10 680.2 1	1.0 6 87.7 <i>18</i>	947.14	1/2+	266.87	3/2+	(M1+E2)		0.00166 <i>10</i>	E _γ ,I _γ : only from 1972Oh06. α (K)=0.00146 8; α (L)=0.000164 12; α (M)=2.85×10 ⁻⁵ 20; α (N+)=4.3×10 ⁻⁶ 3 α (N)=4.0×10 ⁻⁶ 3; α (O)=2.80×10 ⁻⁷ 12 δ ,Mult.: δ (D,Q)=-3.2 to -4.0 or +0.23 to +0.29 if abs(δ (267))=1.2; based on A ₂ =-0.005 21, A ₄ =-0.02 4 for 680γ-267γ(θ) (1972Oh06).
714.4 [#] 2	2.3 [#] 3	2184.62	$(1/2^+, 3/2)$	1470.15	$(1/2^+, 3/2, 5/2^+)$				
947.17 962.3#2	2/9/14 1.6 [#] /2	947.14 1909 56	$1/2^{+}$	0.0 947-14	5/2" 1/2+				
971.0 [#] 8	$0.9^{\#}$ 3	1918.56	$(1/2, 3/2, 5/2^+)$	947.14	$1/2^+$				
987.7 [#] 3	1.4 [#] 3	2457.65	$(1/2^+, 3/2)$	1470.15	$(1/2^+, 3/2, 5/2^+)$				
1158.5 2	4.0 [†] 4	1425.41	3/2+,5/2+	266.87	3/2+				
1168.61 ^b 20	1.4 [†] 5	1168.6?	1/2+	0.0	5/2+				1169-keV peak stronger than expected for 2191γ double escape peak alone (1973Ta15): unplaced by 1973Ta15
1183.5 <i>1</i> ^x 1184.7 <i>6</i>	6.4 7 2.6 5	1450.45	$(1/2^+, 3/2, 5/2^+)$	266.87	3/2+				(1)/01410), unplaced by 1)/01410.

ω

 $^{93}_{40}\mathrm{Zr}_{53}$ -3

$\gamma(^{93}$ Zr) (continued)

E_{γ}^{\dagger}	I_{γ} [‡] &	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Comments
1203.3 <i>1</i>	14.3 7	1470.15	$(1/2^+, 3/2, 5/2^+)$	266.87	3/2+	
1237.4 <i>1</i>	3.9 [†] 9	2184.62	$(1/2^+, 3/2)$	947.14	$1/2^{+}$	
1425.4 <i>1</i>	32.6 9	1425.41	$3/2^+, 5/2^+$	0.0	$5/2^{+}$	
1450.5 <i>1</i>	43.6 18	1450.45	$(1/2^+, 3/2, 5/2^+)$	0.0	$5/2^{+}$	
1470.1 <i>1</i>	8.7 17	1470.15	$(1/2^+, 3/2, 5/2^+)$	0.0	$5/2^{+}$	
1642.7 <i>1</i>	6.9 4	1909.56	$1/2^{+}$	266.87	$3/2^{+}$	
1651.7 2	3.1 4	1918.56	$(1/2, 3/2, 5/2^+)$	266.87	$3/2^{+}$	
1827.8 2	3.1 4	2094.69	$1/2^{+}$	266.87	$3/2^{+}$	
1917.8 <i>1</i>	206 4	2184.62	$(1/2^+, 3/2)$	266.87	$3/2^{+}$	
2184.6 <i>1</i>	20.9 9	2184.62	$(1/2^+, 3/2)$	0.0	$5/2^{+}$	
2190.8 2	22.5 14	2457.65	$(1/2^+, 3/2)$	266.87	$3/2^{+}$	
2457.3 [#] 3	0.9 [#] 2	2457.65	$(1/2^+, 3/2)$	0.0	$5/2^{+}$	
2473.8 2	1.50 14	2473.84		0.0	$5/2^{+}$	
^x 2605 3	1.5 6					E_{γ} : close to 2614 γ (²²⁸ Th) which is a common impurity (1973Ta15).

[†] From 1973Ta15.

4

¹ From 1973Ta15. [‡] Weighted average of data from 1973Ta15 and 1968Po06, normalized so Ti(276 γ)=1000 (assuming α (267 γ)=0.025). [#] From 1973Ta15; γ not reported by other authors. [@] From 1971Ho15; γ not reported by other authors.

[&] For absolute intensity per 100 decays, multiply by 0.0076 11.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

93 Y β^{-} decay 1973Ta15

