176 Yb(28 Si,X γ), 176 Yb(31 P,X γ) 2005Pa48

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 112, 1163 (2011)	15-Dec-2010				

 176 Yb(28 Si,X γ): E(28 Si)=145 MeV; prompt gammas from fission fragments detected using EUROGAM II detector array (54 escape-suppressed Ge detectors, 30 of which were of large-volume coaxial design and the remaining 24 of the four-element clover type); measured E γ , I γ , $\gamma\gamma$ coin.

 176 Yb(31 P,X γ): E(31 P)=152 MeV; EUROBALL IV detector array (15 cluster, 26 clover and 30 tapered single-crystal Ge detectors; each cluster detector was comprised of seven closely-packed, large-volume encapsulated Ge crystals); measured E γ , I γ , $\gamma\gamma$ coin.

⁹³Zr Levels

Energy spectra of excited states in 93 Zr are well reproduced by 2005Pa48 using spherical shell model and a $\pi(2p_{1/2}, 1g_{9/2})$,

 $v(2d_{5/2}, 3s_{1/2})$ space outside a ⁹⁰Zr core and empirical effective interactions. For detailed configuration assignments to ground and excited states in this nuclide, see the authors' discussion.

E(level) [†]	$J^{\pi \ddagger}$	Comments					
0.0	5/2+						
950.4 <i>3</i>	9/2+						
2284.9 [#] 4	$(11/2^{-})$	J^{π} : adopted value is $(13/2^+)$.					
2375.2 4	$(13/2^{-})$	J^{π} : adopted value is $(11/2^{-})$.					
2486.3 5	$(15/2^{-})$						
2601.4 6							
2774.9 4							
2990.2 4	$(15/2^+)$	J^{π} : adopted value is $(15/2^+, 17/2^+)$.					
3265.4 5	$(17/2^+)$	J^{π} : adopted value is $(17/2^+, 21/2^+)$.					
3331.3 6	$(19/2^+)$						
3605.2 6							
3657.3 6	$(21/2^+)$						
4487.1 7	$(23/2^+)$						
4717.0 7	$(25/2^+)$						
5479.5 7							
5488.6 7							
6647.3 8							
7294.8 9							

[†] From least-squares fit to $E\gamma$; $\Delta E\gamma$ =0.3 keV assumed for each transition.

^{\ddagger} Authors' tentative assignments based on previously-known J^{π} for some low-spin states, comparison with theoretical calculations and the assumption that yrast J values increase with excitation energy. Assignments are supported by comparison of corresponding states in neighboring Zr isotopes using a weak-coupling scheme.

[#] The ordering of the 705.5 γ -1334.6 γ cascade here is the reverse of that in ¹⁷³Yb(²⁴Mg,F γ) (2002Fo03) and is supported by the fact that the 1335 γ is clearly stronger than the 706 γ .

$\gamma(^{93}\text{Zr})$

Assignment of transitions to 93 Zr is based on coincidence of γ rays with known transitions from complementary 204 Po binary fission partners, 104,105,106 Ru and 107,108,109 Rh isotopes, and/or γ rays of 93 Zr already known from the literature.

 $^{93}_{40}$ Zr₅₃-1

$\frac{176}{1}$ Yb(²⁸Si,X γ), ¹⁷⁶Yb(³¹P,X γ) **2005Pa48** (continued)

γ ⁽⁹³Zr) (continued)

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Comments
65.9		3331.3	(19/2+)	3265.4 (1	7/2+)	E_{γ} : unresolved multiplet. $I_{(\gamma+ce)} \le 31 \ 3$ from intensity balance At 3265 level, assuming negligible internal conversion for 392 γ and 275 γ .
111.1	44 <i>3</i>	2486.3	$(15/2^{-})$	2375.2 (1	3/2-)	
115.1	19.0 18	2601.4		2486.3 (1	5/2-)	
215.2	5.76	2990.2	$(15/2^+)$	2774.9		
275.2	43 <i>3</i>	3265.4	$(17/2^+)$	2990.2 (1	$5/2^+$)	
326.0	38.1 27	3657.3	$(21/2^+)$	3331.3 (1	$9/2^+$)	
391.9	12.0 5	3657.3	$(21/2^+)$	3265.4 (1	$7/2^+$)	
503.8	30.3 24	2990.2	$(15/2^+)$	2486.3 (1	$5/2^{-}$)	
647.5	5.0 4	7294.8		6647.3		
705.5	19.8 <i>19</i>	2990.2	$(15/2^+)$	2284.9 (1	$1/2^{-}$)	authors' level scheme implies M2 multipolarity.
762.5	10.0 5	5479.5		4717.0 (2	$25/2^+$)	
771.6	6.0 4	5488.6		4717.0 (2	$25/2^+$)	
829.8	9.0 7	4487.1	$(23/2^+)$	3657.3 (2	$21/2^+$	
950.4	100	950.4	9/2+	0.0 5/	2+	
1003.8	5.8 7	3605.2	,	2601.4		
1059.7	23.0 8	4717.0	$(25/2^+)$	3657.3 (2	$21/2^+$)	
1167.8	8.0 5	6647.3		5479.5		
1334.6	29 <i>3</i>	2284.9	$(11/2^{-})$	950.4 9/	2+	
1424.7	46 4	2375.2	$(13/2^{-})$	950.4 9/	2+	authors' level scheme implies M2 multipolarity.
1824.4	4.6 4	2774.9	/	950.4 9/	'2 ⁺	1 1 5

 † Uncertainties unstated by authors.

 $^{93}_{40}$ Zr₅₃-3

 $^{93}_{40}{
m Zr}_{53}$