⁹³Ru ε + β ⁺ decay (59.7 s) 1976De37

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Coral M. Baglin	NDS 112,1163 (2011)	15-Dec-2010						

⁹³Tc Levels

Parent: ⁹³Ru: E=0; $J^{\pi}=(9/2)^+$; $T_{1/2}=59.7$ s 6; $Q(\varepsilon)=6391$ 6; $\%\varepsilon+\%\beta^+$ decay=100 Others: 1983Ay01, 1972Do04.

1976De37:Ge(Li) detectors; measured E γ , I γ , $\gamma\gamma$ coin (time resolution 50 ns FWHM).

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	E(level) [†]	$J^{\pi \ddagger}$
0	9/2+		3914.76 16	$(7/2, 9/2, 11/2)^+$
392.63 10	1/2-		4158.5 <i>3</i>	$(7/2, 9/2, 11/2)^+$
680.69 <i>9</i>	$(7/2^+)$	<35 ns	4187.4 <i>3</i>	$(7/2, 9/2, 11/2)^+$
1194.13 10	$(\geq 7/2)$	<35 ns	4344.4 5	(7/2, 9/2, 11/2)
1408.51 14	$(5/2^{-})$	<35 ns	4389.6 <i>3</i>	$(7/2, 9/2, 11/2)^+$
1434.82 10	$(13/2)^+$	<35 ns	4608.9 4	$(7/2, 9/2, 11/2)^+$
1801.42 10	(7/2, 9/2, 11/2)		4619.0 4	$(7/2, 9/2, 11/2)^+$
1969.61 20	$(5/2^-, 7/2, 9/2^-)$		4668.81 14	$(9/2, 11/2)^+$
2134.41 24	5/2-,7/2-		4760.7 5	(7/2, 9/2, 11/2)
2146.1 4	$(13/2)^{-}$		4775.1 5	$(7/2, 9/2, 11/2)^+$
2257.73 10	(7/2,9/2,11/2)		4937.9 5	$(7/2, 9/2, 11/2)^+$
2338.97 [@] 14			4955.08	$(7/2, 9/2, 11/2)^+$
2490.3 4			5298.2 9	$(7/2, 9/2, 11/2)^+$
2631.21 22	(7/2,9/2,11/2)			

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

[#] From FWHM=50 ns time resolution for $\gamma\gamma$ coin (1976De37). [@] Intensity balance at this level is 0.013% 23.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ #	Ie#	Log <i>ft</i>	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(1093 6)	5298.2		0.029 8	5.56 12	0.029 8	εK=0.8669; εL=0.10792 2; εM+=0.025186 5
(1436 6)	4955.0	0.00043 8	0.038 7	5.69 8	0.038 7	av Eβ=187.9 27; εK=0.8581 6; εL=0.10596 8; εM+=0.02470 2
(1453 6)	4937.9	0.00046 11	0.035 8	5.74 10	0.035 8	av Eβ=195.3 26; εK=0.8565 6; εL=0.10574 9; εM+=0.02465 2
(1616 6)	4775.1	0.0016 3	0.037 7	5.80 8	0.039 7	av Eβ=265.3 26; εK=0.8315 13; εL=0.10239 17; εM+=0.02386 4
(1630 6)	4760.7	0.0011 3	0.023 7	6.02 13	0.024 7	av Eβ=271.5 26; εK=0.8283 14; εL=0.10197 18; εM+=0.02376 5
(1722 6)	4668.81	0.041 4	0.52 5	4.71 4	0.56 5	av Eβ=311.2 26; εK=0.8041 19; εL=0.09887 24; εM+=0.02304 6
(1772 6)	4619.0	0.0077 11	0.075 11	5.57 7	0.083 12	av Eβ=332.8 27; εK=0.7881 21; εL=0.0969 3; εM+=0.02256 6
(1782 6)	4608.9	0.0087 14	0.081 13	5.54 7	0.090 14	av Eβ=337.2 27; εK=0.7846 22; εL=0.0964 3; εM+=0.02246 7
(2001 6)	4389.6	0.026 3	0.101 13	5.55 6	0.127 16	av Eβ=433.0 27; εK=0.692 3; εL=0.0848 4; εM+=0.01975 9
(2047 6)	4344.4	0.0074 16	0.025 5	6.18 10	0.032 7	av Eβ=452.9 27; εK=0.669 3; εL=0.0820 4; εM+=0.01910 9
(2204 6)	4187.4	0.028 3	0.058 6	5.88 5	0.086 9	av Eβ=522.4 27; εK=0.587 4; εL=0.0719 4; εM+=0.01674 10

Continued on next page (footnotes at end of table)

⁹³Ru ε + β ⁺ decay (59.7 s) 1976De37 (continued)

E(decay)	E(level)	Ιβ ⁺ #	$\mathrm{I}\varepsilon^{\#}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(2233 6)	4158.5	0.038 3	0.072 7	5.79 4	0.110 10	av E β =535.2 27; ε K=0.572 4; ε L=0.0700 4; ε M+=0.01630 10
(2476 6)	3914.76	0.24 2	0.25 2	5.34 4	0.49 4	av $E\beta$ =644.2 27; ε K=0.447 3; ε L=0.0547 4; ε M+=0.01273 9
(3760 6)	2631.21	0.068 9	0.010 1	7.11 6	0.078 10	av Eβ=1234.2 28; εK=0.1122 7; εL=0.01364 8; εM+=0.003172 19
(3901 6)	2490.3	0.018 4	0.0023 6	7.79 11	0.020 5	av Eβ=1300.2 29; εK=0.0982 6; εL=0.01193 7; εM+=0.002775 16
(4133 6)	2257.73	0.19 3	0.019 3	6.91 7	0.21 3	av Eβ=1409.6 29; εK=0.0796 5; εL=0.00966 6; εM+=0.002247 12
(4245 6)	2146.1	0.044 11	0.010 3	9.05 ¹ <i>u</i> 12	0.054 14	av Eβ=1472.4 28; εK=0.1605 8; εL=0.01967 10; εM+=0.004581 24
(4257 6)	2134.41	0.077 8	0.0069 7	7.38 5	0.084 9	av $E\beta$ =1467.8 29; ε K=0.0715 4; ε L=0.00868 5; ε M+=0.002020 11
(4421 6)	1969.61	0.184 20	0.0142 16	7.10 5	0.198 22	av $E\beta$ =1545.7 29; ε K=0.0623 3; ε L=0.00757 4; ε M+=0.001760 9
(4590 6)	1801.42	0.36 4	0.024 3	6.91 5	0.38 4	av $E\beta$ =1625.5 29; ε K=0.0545 3; ε L=0.00661 4; ε M+=0.001538 8
(4956 6)	1434.82	0.35 5	0.018 2	7.10 6	0.37 5	av Eβ=1800.0 29; εK=0.04137 18; εL=0.005017 22; εM+=0.001167 5
				1		Log <i>ft</i> : far too low for $\Delta J=2$, $\Delta \pi=No$ feeding.
(4983-6)	1408.51	0.20 4	0.023 5	8.9714 10	0.22 5	av $E\beta = 1816.2 29$; $\varepsilon K = 0.0902 4$; $\varepsilon L = 0.01102 5$; $\varepsilon M + = 0.002566 12$
(5197 6)	1194.13	0.22 3	0.0092 12	7.42 6	0.23 3	av Eβ=1915.0 29; εK=0.03495 15; εL=0.004238 18; εM+=0.000985 4
(5710 6)	680.69	5.3 4	0.16 1	6.27 4	5.5 4	av Eβ=2161.4 29; εK=0.02509 10; εL=0.003040 12; εM+=0.000707 3
6337 85	0	89.1 6	1.77 2	5.321 6	90.9 [‡] 6	 av Eβ=2489.9 29; εK=0.01698 6; εL=0.002056 7; εM+=0.0004779 1 E(decay): from 1983Ay01: Si(Li)-telescope, Fermi-Kurie analysis.

ϵ, β^+ radiations (continued)

[†] From I(γ +ce) imbalance At each level.

[‡] %ε+%β⁺ to (g.s.+393 level) is 90.9 *6*. Because J differs by 4 for these levels, the feeding to one must be first forbidden unique or higher; feeding to the other would then be allowed (*e.g.*, for 393 level, $I(ε+β^+)<2.5\%$ if log $f^{1u}t>8.5$ and, for g.s., log ft<5.9 provided that $I(ε+β^+)>23\%$). The observed feeding to the (7/2⁺) 681 level with log ft=6.25 5 rules out an allowed transition to the (1/2)⁻ 393 level. Thus, $J^{\pi}({}^{93}\text{Ru})\geq7/2^+$ and feeding to the (1/2)⁻ 393 level can be ignored.

[#] Absolute intensity per 100 decays.

γ (⁹³Tc)

I γ normalization: From I(γ^{\pm})/I(681 γ)=32.6 20 and I(γ +ce) imbalance, assuming I ϵ /I β (theory) and no feeding to 393 level (for which Δ J=4).

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	$\alpha^{\&}$	Comments
392.65 10		392.63	1/2-	0	9/2+	M4		0.325	$\alpha(K)=0.271 \ 4; \ \alpha(L)=0.0449 \ 7; \ \alpha(M)=0.00840 \ 12; \ \alpha(N+)=0.001381 \ 20 \ \alpha(N)=0.001309 \ 19; \ \alpha(O)=7.23\times10^{-5} \ 11$
561.2 2 680.7 <i>1</i>	20.4 <i>20</i> 1000	1969.61 680.69	(5/2 ⁻ ,7/2,9/2 ⁻) (7/2 ⁺)	1408.51 0	(5/2 ⁻) 9/2 ⁺	(M1+E2)	0.7 2	0.00208 3	$\alpha(K)=0.00183 \ 3; \ \alpha(L)=0.000210 \ 4;$ $\alpha(M)=3.81\times10^{-5} \ 7; \ \alpha(N+)=6.45\times10^{-6} \ 10$ $\alpha(N)=6.05\times10^{-6} \ 10; \ \alpha(O)=4.03\times10^{-7} \ 6$
711.3 3	9.2 22	2146.1	(13/2)-	1434.82	(13/2)+	E1		0.000707 10	$\alpha(K)=0.000623 \ 9; \ \alpha(L)=6.97\times10^{-5} \ 10; \alpha(M)=1.259\times10^{-5} \ 18; \ \alpha(N+)=2.14\times10^{-6} \ 3 \alpha(N)=2.00\times10^{-6} \ 3; \ \alpha(O)=1.341\times10^{-7} \ 19$
725.9 2 ^x 789.4 3	14.3 <i>10</i> 10.2 <i>11</i>	2134.41	5/2-,7/2-	1408.51	(5/2 ⁻)				
1015.9 <i>1</i>	72 7	1408.51	(5/2 ⁻)	392.63	1/2-	[E2]		0.000798 12	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000701 \ 10; \ \alpha(\mathrm{L}) = 8.02 \times 10^{-5} \ 12; \\ &\alpha(\mathrm{M}) = 1.450 \times 10^{-5} \ 21; \ \alpha(\mathrm{N}+) = 2.46 \times 10^{-6} \\ &\alpha(\mathrm{N}) = 2.30 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 1.526 \times 10^{-7} \ 22 \end{aligned}$
1194.1 <i>1</i>	63 4	1194.13	(≥7/2)	0	9/2+				
1288.7 3	13.2 22	1969.61	$(5/2^-, 7/2, 9/2^-)$	680.69	$(7/2^{+})$				5
1434.9 <i>1</i>	123 6	1434.82	(13/2)+	0	9/2+	E2		0.000443 7	$\alpha(K)=0.000336 5; \alpha(L)=3.78\times10^{-5} 6; \alpha(M)=6.83\times10^{-6} 10; \alpha(N+)=6.21\times10^{-5} 9 \alpha(N)=1.088\times10^{-6} 16; \alpha(O)=7.34\times10^{-8} 11; \alpha(IPF)=6.10\times10^{-5} 9$
1576.0 4	8.9 <i>13</i>	3914.76	$(7/2, 9/2, 11/2)^+$	2338.97					
1658.7 <i>3</i>	5.3 12	2338.97		680.69	$(7/2^+)$				
1801.4 <i>1</i>	64 <i>3</i>	1801.42	(7/2,9/2,11/2)	0	9/2+				
1809.6 4	3.4 8	2490.3		680.69	$(7/2^+)$				
1950.5 2	13.2 13	2631.21	(7/2,9/2,11/2)	680.69	$(7/2^+)$				
~1969.0 2	11.1 11	2257 72	(7/2, 0, 0, 1, 1, 1, 0)	0	0/2+				
2257.77 X2212.4.7	30 4	2257.73	(//2,9/2,11/2)	0	9/2				
~2313.4 /	25 5	1660 01	$(0/2 \ 1 \ 1/2)^{+}$	2228 07					
2329.1 2	0.2 14 14 2	4008.81	(9/2, 11/2)	2338.97	$0/2^{+}$				
2330.7 2	14.5	2014 76	$(7/2 0/2 11/2)^+$	110/13	$(\ 7/2)$				
x2902 1 3	11220	3914.70	(7/2,9/2,11/2)	1174.13	$(\geq 1/2)$				
x2929 6 5	10.0.12								
x3151.8 3	19.5 20								

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}
3234.3 2	51.6 26	4668.81	(9/2,11/2)+	1434.82	$(13/2)^+$	4187.3 [#] 3	14.6 10	4187.4	(7/2,9/2,11/2)+	0	9/2+
^x 3331.8 [#] 2	37 4					4257.2 5	4.1 10	4937.9	$(7/2, 9/2, 11/2)^+$	680.69	$(7/2^+)$
^x 3418.5 [#] 3	25.5 26					4344.3 [#] 5	5.4 11	4344.4	(7/2,9/2,11/2)	0	9/2+
^x 3434.4 [#] 4	10.4 13					4389.5 [#] 3	21.5 22	4389.6	(7/2,9/2,11/2)+	0	9/2+
3477.3 6	3.6 5	4158.5	(7/2,9/2,11/2)+	680.69	$(7/2^+)$	4608.9 [#] 4	10.2 17	4608.9	(7/2,9/2,11/2)+	0	9/2+
x3509.3 <i>3</i>	11.0 19					4618.9 [#] 4	14.1 17	4619.0	(7/2,9/2,11/2)+	0	9/2+
3914.7 [#] 2	53 <i>3</i>	3914.76	(7/2,9/2,11/2)+	0	9/2+	4668.1 [#] 3	15.8 17	4668.81	$(9/2, 11/2)^+$	0	9/2+
3928.0 5	5.0 10	4608.9	(7/2,9/2,11/2)+	680.69	$(7/2^+)$	4759.6 [#] 10	0.6 3	4760.7	(7/2,9/2,11/2)	0	9/2+
3988.0 <i>3</i>	20.0 25	4668.81	$(9/2, 11/2)^+$	680.69	$(7/2^+)$	4775.0 [#] 10	0.6 3	4775.1	(7/2,9/2,11/2)+	0	9/2+
4080.1 5	3.5 10	4760.7	(7/2,9/2,11/2)	680.69	$(7/2^+)$	4937.5 [#] 10	1.8 6	4937.9	(7/2,9/2,11/2)+	0	9/2+
4094.3 5	6.0 10	4775.1	(7/2,9/2,11/2)+	680.69	$(7/2^+)$	4954.9 [#] 8	6.5 10	4955.0	(7/2,9/2,11/2)+	0	9/2+
4104.1 10	3.0 10	5298.2	(7/2,9/2,11/2)+	1194.13	(≥7/2)	5297.9 [#] 15	1.9 6	5298.2	(7/2,9/2,11/2)+	0	9/2+
4158.5 [#] 3	15.1 10	4158.5	(7/2,9/2,11/2)+	0	9/2+						

4

[†] From 1976De37. [‡] From Adopted Gammas. [#] Not coincident with any γ or γ^{\pm} (1976De37).

^(e) For absolute intensity per 100 decays, multiply by 0.0059 4. [&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

 $^{93}_{43}{\rm Tc}_{50}{\rm -}5$

⁹³Ru ε decay (59.7 s) 1976De37

⁹³Ru ε decay (59.7 s) 1976De37

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

⁹³₄₃Tc₅₀