		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 112,1163 (2011)	15-Dec-2010

⁹³Tc Levels

The high spin level scheme is that proposed in the 58 Ni(40 Ca,5p γ) reaction study; it differs in several significant respects from that suggested in 66 Zn(31 P,2p2n γ) (see the latter data set for specific differences).

Cross Reference (XREF) Flags

	$ \begin{array}{l} A & {}^{92}\text{Mo}(\alpha,\text{p2}) \\ B & {}^{92}\text{Mo}(\alpha,\text{t}) \\ C & {}^{92}\text{Mo}(\alpha,\text{n}) \\ D & {}^{92}\text{Mo}(\text{p},\gamma) \\ E & {}^{92}\text{Mo}({}^{3}\text{He}, \end{array} $	nγ), ⁹⁰ Zr(⁶ Li,3nγ d), (³ He,dp)	$F = {}^{93}\text{Ru} \varepsilon \text{ dec}$ $G = {}^{93}\text{Ru} \varepsilon \text{ dec}$ $H = {}^{93}\text{Tc} \text{ IT de}$ $I = {}^{96}\text{Ru}(p,\alpha)$ $J = {}^{92}\text{Mo}({}^{16}\text{O}, \alpha)$	cay (10.8 s) cay (59.7 s) cay (43.5 min) ¹⁵ N), (¹² C, ¹¹ B)	K $^{66}Zn(^{31}P,2p2n\gamma),$ L $^{93}Nb(\pi^+,\pi^-)$ M $^{92}Mo(p,p'),$ (pol p,p) IARN $^{58}Ni(^{40}Ca,5p\gamma),$ O $^{92}Mo(p,p)$ IAR: fine structure		
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF		Comments		
0.0 ^e	9/2+	2.75 h 5	ABCDEFGHIJKL N	$%ε+%β^+=100$ μ=6.32 6 J ^π : L=4 in (d,n Schmidt valu T _{1/2} : from 1944 (1948Mo18). μ: from g=1.40 Others: 6.26 (1989Ra17, ff 1977Be19, fo) and (³ He,d); comparison of μ with es. 8Ku26. Others: 2.7 h 4 (1939De01), 2.7 h 1 5 14 (1995Hi06); NMR on oriented nuclei. 10 from radiative detection of NMR from g=1.392 22 (1981Ha16)); 6.2 +11-4 from w temperature nuclear orientation in iron		
391.84 8	1/2-	43.5 min 10	BCDEFGHIJ	(1989Ra17). %IT=77.4 6; % J^{π} : L=1 in (d,n $T_{1/2}$: from 195	$\delta \varepsilon + \mathscr{B}^{+} = 22.6 \ 6$) and (³ He,d); M4 392 γ to $J^{\pi} = 9/2^{+}$ g.s. OMe21. Others: 45 min 5 (1939De01), 40 min		
680.59 8	$(7/2^+)$	<35 ^{<i>a</i>} ns	AB DE G I	J^{π} : (M1+E2) 68	S1 γ to $J^{\pi}=9/2^+$; shell-model predictions;		
1190 9	1/2-,3/2-		BcdE i	$J \le 1/2$ from s Additional infor	rmation 1. e.d).		
1194.13 <i>10</i> 1407.80 <i>12</i>	(≥7/2) (5/2 [−])	<35 ^{<i>a</i>} ns <35 ^{<i>a</i>} ns	cd Gi BDFGI	J^{π} : log ft=7.4 (J ^{π} : log ft=7.3 (392	$\log f^{4u}t > 8.5$) from (9/2) ⁺ ; 1194 γ to 9/2 ⁺ g.s. $\log f^{4u}t = 8.9$) from (9/2) ⁺ ; 1016 γ to 1/2 ⁻		
1434.42 ^e 13 1503.04 12 1515.95 ^e 11	(13/2) ⁺ 1/2 ⁻ ,3/2 ⁻ (11/2) ⁺	<10 ns	A G K N BCDEF I A N	J^{π} : E2 1435 γ to J^{π} : L(³ He,d)=1 J^{π} : M1+E2 γ to assignment.	$J^{\pi}=9/2^+$ g.s.; configuration assignment. $p 9/2^+$; possible γ to $(7/2^+)$; configuration		
1555 2 1788.09 <i>13</i> 1801.42 <i>10</i> 1969.09 <i>19</i>	1/2 ⁻ ,3/2 ⁻ (7/2,9/2,11/2) (5/2 ⁻ ,7/2,9/2 ⁻)		D BCDEF i G i G I	J^{π} : L=1 in (d,n) J^{π} : log $f^{1u}t < 8.5$ J^{π} : log $ft=7.1$ () and $({}^{3}\text{He,d})$. 5 from $(9/2)^{+}$. $\log f^{4u}t=8.6$) from $(9/2)^{+}$; 561 γ to $(5/2^{-})$		

⁹³Tc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
2133.70 <i>24</i> 2142 <i>2</i>	5/2 ⁻ ,7/2 ⁻		B DE G I D	1408. J^{π} : L=3 in (³ He,d). E(level): from (p, γ). J^{π} : γ from J=3/2 6576, so J \leq (7/2). Average resonance yield in (p, γ) is consistent with calculated yield for $J^{\pi}=7/2^{-}$, $5/2^{-}$ and $3/2^{+}$, but this may not Be a reliable indicator of J^{π} .
2145.45 ^d 13	(13/2) ⁻		A G N	J^{π} : E1 629 γ to (11/2) ⁺ 1516; E1 711 γ to (13/2) ⁺ 1434;
2184.84 ^e 15	$(17/2)^+$	27 ps 5	A K N	J^{π} : E2 750 γ to (13/2) ⁺ 1434; configuration assignment.
2185.16 ^{<i>d</i>} 15	(17/2)-	10.2 μs 3	A K N	%IT=100 μ =+10.46 5 J ^{π} : M2+E3 751 γ to J ^{π} =(13/2) ⁺ 1434; 40 γ to J ^{π} =(13/2) ⁻ 2145; configuration assignment. μ : from DPAD (1989Ra17, from data of 1977Ha49); value is corrected for diamagnetic shielding and Knight shift.
2257.73 10 2290? 20 2338.89 14	(7/2,9/2,11/2)		G I G	J^{π} : log $f^{1u}t < 8.5$ from $(9/2)^+$. J^{π} : 2432 γ to $9/2^+$ g.s.: 1659 γ to $(7/2^+)$ 681, so
2431.08 <i>15</i> 2490.2 <i>4</i>	(1/2,3/2) ⁻		D F G I	$J^{\pi} = (5/2^+, 7/2, 9/2, 11/2^+).$ $J^{\pi} : \log ft = 4.7 \text{ from } J^{\pi} = (1/2)^$ $J^{\pi} : \log ft = 7.75 \ (\log f^{4u}t > 8.5) \text{ from } (9/2)^+; 1810\gamma \text{ to}$ $(7/2^+) = 681$
2535.3 ^e 4	(21/2)+	1.61 ns <i>11</i>	A K N	J^{π} : E2 γ to $(17/2)^+$; configuration assignment. $T_{1/2}$: weighted average of 1.82 ns <i>10</i> from direct timing in (⁴⁰ Ca,5p γ), 1.61 ns <i>10</i> from α -ce(t) in (α ,p2n γ) and 1.44 ns 9 from recoil distance Doppler shift in (³⁵ Cl, α 2p γ). The unweighted average of these data is 1.62 ns <i>11</i>
2563 <i>3</i>	3/2+,5/2+		BCDE IJ	Additional information 2. $I^{\pi}: I = 2$ in (³ He d)
2631.11 22 2710 20 2840? 20 2100 20	(7/2,9/2,11/2)		G I I	J^{π} : log $f^{1u}t=8.45 \ 10 \ \text{from } (9/2)^+$.
3150 <i>11</i>	(3/2 ⁺ ,5/2 ⁺)		EI	Additional information 3. J^{π} : L(³ He,d)=(2).
3213.5 25	3/2+,5/2+	@	CD	J^{π} : L=2 in (d,n).
3280.9 ^{<i>a</i>} 4	$(21/2^{-})$	<1.4 ^w ps	A K N	$T_{1/2}$: from recoil distance Doppler shift. J ^{π} : Q 1096 γ to J ^{π} =(17/2) ⁻ ; configuration assignment.
3353 7	3/2+,5/2+		BCE IJ	Additional information 4. J^{π} : L=2 in (d,n).
$3580\ 20$ $3888.4^d\ 5$	(25/2 ⁻)	57.5 [@] ps 21	B A KN	$T_{1/2}$: from recoil distance Doppler shift. Other: 60 ps 6 from differential decay curve method.
3897 12	1/2+		bCE j	J [*] : Q γ to (21/2); configuration assignment. XREF: b(3910)j(3870). Additional information 5. J ^{π} : L(d,n)=0. L(³ He,d)=0+2 may indicate the existence of
3914.75 <i>16</i>	(7/2,9/2,11/2)+		b G j	XREF: $b(3910)j(3870)$. $I^{\pi}: \log ft=5.3$ from $I^{\pi}=(9/2)^+$
3927.8 [°] 8 3950 <i>20</i>	(19/2+)		N C j	XREF: j(3870).

⁹³Tc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XRE	F		Comments
4104 11	$1/2^{+}$		bC E			XREF: b(4150).
	1					Additional information 6.
						J^{π} : L=0 in (d,n).
4158.5 <i>3</i>	(7/2,9/2,11/2)+		b G			XREF: b(4150).
						J^{π} : log ft=5.75 from (9/2) ⁺ .
4187.4 <i>3</i>	$(7/2, 9/2, 11/2)^+$		b G			XREF: b(4150).
		-				J^{π} : log ft=5.8 from $J^{\pi} = (9/2)^+$.
4257.3 ^c 4	$(21/2^+)$	3.3 [@] ps 4	Α	K	N	$T_{1/2}$: from differential decay curve method.
						J^{π} : $\Delta J=0 \gamma$ to $(21/2)^+$; configuration assignment.
4344.4 5	(7/2,9/2,11/2)		G			J^{π} : log $f^{1u}t < 8.5$ from $J^{\pi} = (9/2)^+$.
4389.6 <i>3</i>	$(7/2, 9/2, 11/2)^+$		BEG			J^{π} : log ft=5.5 from $J^{\pi} = (9/2)^+$.
4451 <i>16</i>			ΒE			Additional information 7.
4608.9 4	$(7/2, 9/2, 11/2)^+$		G			J^{π} : log ft=5.5 from $J^{\pi} = (9/2)^+$.
4619.0 4	$(7/2, 9/2, 11/2)^+$		G			J^{π} : log ft=5.5 from $J^{\pi} = (9/2)^+$.
4668.63 14	$(9/2,11/2)^+$		BC E G			Additional information 8.
						J^{π} : log ft=4.7 from $J^{\pi} = (9/2)^+$; 3234 γ to $(13/2)^+$ 1434.
4760.6 5	(7/2,9/2,11/2)		b G	j		XREF: $j(4/30)$.
						$J^{n}: \log f^{nu} t < 8.5$ from $(9/2)^{+}$.
4764 11	3/2+,5/2+		bC E	j		XREF: j(4730).
						J^{n} : L=2 in (³ He,d) and (d,n).
4775.0 5	(7/2,9/2,11/2)+		b G	j		XREF: $b(4770)J(4730)$.
1000 12	2/0+ 5/0+					$J^{n}: \log ft = 5.76$ from $(9/2)^{1}$.
4900 12	3/21,5/21		BCE			Additional information 9.
1027.0.5	(7/2 0/2 11/2)+					J^{n} : L=2 in (³ He,d) and (d,n).
4937.8 5	$(1/2,9/2,11/2)^+$		G			$J^{\pi}: \log ft=5.7$ from $J^{\pi}=(9/2)^{+}$.
4955.0 8	(//2,9/2,11/2)	0	G			$J^{n}: \log ft=5.7$ from $J^{n}=(9/2)^{n}$.
4973.9 9	$(25/2^+)$	<0.90 ^w ps			N	$T_{1/2}$: from recoil distance Doppler shift.
						Configuration= $(\pi g_{9/2}^3)$ suggested in (⁴⁰ Ca,5p γ).
5032 21	3/2+,5/2+		CE			Additional information 10.
		0				J^{π} : L=2 in (³ He,d) and (d,n).
5076.4 [°] 6	$(23/2^+)$	<55 [@] ps		Κ	N	XREF: K(5267).
						$T_{1/2}$: from recoil distance Doppler shift.
						E(level): in $({}^{31}P,2p2n\gamma)$, the order of the 488 γ and 818 γ
						is reversed, resulting in E=5267 for the intermediate level
						energy.
5176 10	$3/2^+, 5/2^+$		BC E			Additional information 11.
						J^{π} : L=2 in (d,n) and (³ He,d).
5298.2 9	$(7/2, 9/2, 11/2)^+$		G			J^{π} : log ft=5.5 from $J^{\pi} = (9/2)^+$.
5316 18	$3/2^+, 5/2^+$		CE			Additional information 12.
						J^{π} : L=2 in (³ He,d) and (d,n).
5490 20	1/2+		C			J^{π} : L=0 in (d,n).
5492 18	$(3/2^+, 5/2^+)$	_	СЕ			J^{π} : L=(2) in (³ He,d).
5564.3 [°] 7	$(25/2^+)$	6.9 [@] ps 10		Κ	N	XREF: K(4779).
						$T_{1/2}$: from differential decay curve method in
						64 Zn(35 Cl, α 2p γ).
						E(level): in $({}^{31}P,2p2n\gamma)$, the order of the 523 γ and 1306 γ
						is reversed, resulting in E=4779 for the intermediate level
						energy.
5620	$1/2^{+}$		С			J^{π} : L=0 in (d,n).
5648 18	$3/2^+, 5/2^+$		Е			J^{π} : L=2 in (³ He,d).
5680	$1/2^{+}$		С			J^{π} : L=0 in (d,n).
5780	3/2+,5/2+		С			J^{π} : L=2 in (d,n).
5830 20			E			

⁹³Tc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XRI	EF		Comments
5980 18	1/2+		BC E			Additional information 13. J^{π} : L=0 in (³ He,d).
6017.4 8	$(27/2^+)$	<62 [@] ps		K	N	XREF: K(3956).
						$E(\text{level})$: in (³¹ P,2p2n γ), the order of the 70 γ and 2130 γ is reversed, resulting in E=3956 for the intermediate level energy.
6053.3 ^b 9	$(25/2^{-})$	<0.55 [@] ps			N	$T_{1/2}$: from recoil distance Doppler shift.
6087.8 ^C 8	(29/2 ⁺)	104 [@] ps 6		K	N	T _{1/2} : weighted average of 106 ps 7 from recoil distance Doppler shift and 100 ps <i>10</i> from differential decay curve method in (40 Ca,5p γ).
6106	1/2,3/2 ^{&}		D			
6232 18			ΒE			E(level): from (³ He,d); 6170 30 in (α ,t).
6366	$1/2, 3/2, 5/2^{(-)}$	(0	D			J^{n} : $\gamma(\theta)$ in (p,γ) ; 5974 γ to $1/2^{-}$ 392.
6373.10 7	(27/2 ⁻)	215 ^w fs <i>14</i>		K	N	$T_{1/2}$: from differential decay curve method. Other: <0.69 ps from recoil distance Doppler shift.
6454.0 ⁰ 9	(29/2 ⁻)	<0.55 [@] ps			N	$T_{1/2}$: from recoil distance Doppler shift. Different configuration suggested in 1994Ro08.
6463	3/2		b D			
6469	5/2 ^{&}		b D			
6477	5/2,7/2 ^{&}		b D			XREF: b(6440).
6531	3/2 ^{&}		D			
6576	3/2 ^{&}		D			
6596	$(3/2)^{-}$		D f			XREF: f(6595).
						J ^{π} : allowed ⁹⁵ Ru ε decay (10.8 s) is observed from (1/2) ⁻ to a 6595 5 proton-emitting level; J=3/2 favored
6600	1/2 3/2 5/2(-)		ъf			by $\gamma(\theta)$ in (p, γ). VDEE : f(6505)
0000	1/2,3/2,3/2					J ^π : $\gamma(\theta)$ in (p,γ); 6208γ to 1/2 ⁻ 392. Allowed ⁹³ Ru ε decay (10.8 s) is observed from (1/2) ⁻ to a 6595 5
		-				proton-emitting level.
6670.6 ^c 9	$(31/2^+)$	0.236 [@] ps 28		K	N	XREF: K(6668).
						$T_{1/2}$: from differential decay curve method. Other: <0.55 ps from recoil distance Doppler shift.
6857 1 <mark>b</mark> 7	$(20/2^{-})$	$0.01^{@}$ ms 5		v	N	J. (M1) y to (55/2), configuration assignment.
0657.1 7	(29/2)	0.91 ps 5		K	М	from recoil distance Doppler shift. (1.2 ps)
7160 50			Е			
7282.2 ^c 9	$(33/2^+)$	<0.42 [@] ps		K	N	XREF: K(7279).
						T _{1/2} : from recoil distance Doppler shift. J ^{π} : (M1) γ to (31/2 ⁺); configuration assignment.
7373.5 ^b 9	(31/2 ⁻)	0.89 [@] ps 8		K	N	$T_{1/2}$: from differential decay curve method. Other: <1.2 ps from recoil distance Doppler shift.
7650 50			E			
7811.9 ^c 11	$(35/2^+)$	0.62 [@] ps 11		K	N	XREF: K(7809).
						T _{1/2} : from recoil distance Doppler shift. J ^{π} : (M1) γ to (33/2 ⁺); configuration assignment.
7880.2 ^b 9 8100 50	(33/2 ⁻)	<0.28 [@] ps	Е	K	N	T _{1/2} : from recoil distance Doppler shift.
8396.7 20	5/2+	15 eV 2	CE		M	J^{π} : L=2 in (d,n) and (³ He,d); analyzing power in (pol p,p) IAR; isobaric analog of $5/2^{+93}$ Mo(g.s.). See

⁹³Tc Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	XR	EF	Comments
					92 Mo(p,p) fine structure for data on ≈ 19 fragments of this resonance.
8487.6 ^b 13	$(35/2^{-})$			K N	XREF: K(8494).
8497.5 ^b 9	(35/2 ⁻)	0.41 [@] ps 6		N	$T_{1/2}$: from differential decay curve method. Other: <0.69 ps from recoil distance Doppler shift.
8852.3 ^b 10	(37/2 ⁻)	0.71 [@] ps 6		K N	$T_{1/2}$: from differential decay curve method. Other: <0.83 ps from recoil distance Doppler shift.
9139.7 ^b 17	$(37/2^{-})$			N	
9332 3	1/2+	36 eV 4	CE	М	J ^{π} : L=0 in (d,n) and (³ He,d). Isobaric analog of ⁹³ Mo(943 level). See ⁹² Mo(p,p) fine structure for data on \approx 180 fragments of this resonance.
9372.4 ^b 14	$(37/2^{-})$			N	
9420.6 ^b 11	(39/2 ⁻)	2.6 [@] ps 9		K N	XREF: K(9416). $T_{1/2}$: from recoil distance Doppler shift.
9.54×10 ³ 19				L	E(level): $T_{<}$ resonance structure; not a discrete level.
9780 <i>16</i>	7/2+		CE		J ^{π} : L=4 in (³ He,d); isobaric analog of $J^{\pi}=7/2^{+93}$ Mo(1363 level).
9898	3/2+	22 eV 2	CDE	М	J^{π} : L=2 in (d,n) and (³ He,d); analyzing power in (pol p,p) IAR. Isobaric analog of $3/2^+$ ⁹³ Mo(1492 level).
0048 16	7/2+		F		E(level): from (p, γ). E=9900 70 in (°He,d). π : I = 4 in (³ He d); isobaric analog of 7/2 ⁺ 9 ³ Mo(1520 level)
10110 16	5/2+	17 eV 3	F	м	J^{π} : L=2 in (³ He d): analyzing power in (pol p p) IAR
10110 10	5/2	1,0,3	-		Isobaric analog of $5/2^{+93}$ Mo(1695 level).
10272.2 15	(39/2+)	<1.3 [@] ps		N	$T_{1/2}$: from recoil distance Doppler shift. Configuration= $(\pi g_{5/2}^5)(\gamma d_{5/2} g_{-1}^{-1})$.
10566	3/2+	14 eV 4		М	J^{π} : analyzing power in (pol p,p) IAR; analog of $3/2^{+}$ 93 Mo(2181 level).
10728 16	$(11/2^{-})$		Е		J ^{π} : if isobaric analog of $(11/2)^{-93}$ Mo(2304 level).
10833	1/2+	37 eV		М	J ^π : L=0 resonance in (p,p) IAR; analog of 1/2 ^{+ 93} Mo(2437 level).
11097.8 13	$(41/2^{-})$	10 11		N	
11190	$(1/2^+)$	49 eV		M	J [*] : L=0 resonance in (p,p) IAR; analog of (1/2 ⁺) ⁵⁵ Mo(2/43 level).
11289	$(3/2^+)$	20 eV		М	J ^{π} : analyzing power in (pol p,p) IAR. Possible analog of ⁹³ Mo(2881 level).
11526.4 13	$(43/2^{-})$	$<2.8^{(0)}$ ps	-	N	$T_{1/2}$: from recoil distance Doppler shift.
11600-50	$(5/2^{+})$	30 eV	E	M	J ^{\sim} : analyzing power in (pol p,p) IAR. Possible analog of ⁹³ Mo(3159 level)
11.79×10^3 19				L	E(level): T resonance structure: not a discrete level.
11852	$(5/2^+)$	40 eV		M	J^{π} : analyzing power in (pol p,p) IAR. Possible analog of ⁹³ Mo(3450 level).
12016	$(3/2^+)$	20 eV		М	J^{π} : analyzing power in (pol p,p) IAR. Possible analog of 93 Mo(3596 level).
12100	$(3/2^+)$	35 eV		М	J^{π} : analyzing power in (pol p,p) IAR.
12209	$(5/2^{-})$	25 eV		М	J^{π} : analyzing power in (pol p,p) IAR.
12218.2 18	$(43/2^+)$	70 eV		N M	$\pi_{\rm L}$ analyzing neuron in (not n n) IAD
12430	(3/2)	70 ev		ri M	Possible analog of 93 Mo(3980 level).
12384	(3/21)	50 ev		M	Possible analog of ⁹³ Mo(4170 level).

⁹³Tc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
13258.3 15	(41/2,43/2 ⁻)	<1.4 [@] ps	N	J^{π} : 3838 γ to 9421 (39/2 ⁻).
				$T_{1/2}$: from recoil distance Doppler shift.
15.08×10^3 7			L	E(level): $T_{<}$ resonance structure; not a discrete level.
16.86×10 ³ 9			L	E(level): $T_{<}$ resonance structure; not a discrete level.
19.53×10 ³ 2			L	E(level): double isobaric analog resonance; not a discrete level.
20.48×10 ³ 11			L	A $T_{>}$ resonance.
33.73×10 ³ 26		5.1 MeV 11	L	$T_{1/2}$: from (π^+,π^-) . Collective giant resonance from coupling of GDR and isobaric analog resonance.
47.3×10 ³			L	Resonance in (π^+,π^-) interpreted as double dipole resonance; $\sigma(\theta)$ has Q shape; $\Gamma \approx 8-10$ MeV (1994Mo04).

 † For additional levels with 8353<E<9533, see $^{92}Mo(p,p)$ IAR: fine structure.

[‡] Values given without comment are from (⁴⁰Ca,5p γ), and are based on transition multipolarity (from γ anisotropy ratios and the assumptions that all transitions have $J_i \ge J_f$, most have $J_i > J_f$ and that crossover transitions are E2) and calculated shell-model structure.

- [#] From (α ,p2n γ), except as noted, for E<8000; from ⁹²Mo(p,p), (pol p,p) IAR for E>8000, except as noted.
- ^(a) From recoil distance Doppler shift (RDDS) and/or differential decay curve method (DDCM) in 64 Zn(35 Cl, $\alpha 2p\gamma$) (2003Ha22). ^(a) From $\gamma(\theta)$ in (p, γ).
- ^{*a*} From time resolution for coincidences in 93 Ru ε decay (59.7 s).
- ^b Band(A): π =-, seniority=3 states. Major configuration=(π p_{1/2}g_{9/2})(ν d_{5/2}g_{9/2}⁻¹) and (π p_{1/2}g_{9/2}d_{5/2}f_{5/2})(ν d_{5/2}g_{9/2}⁻¹) (1995Gh08).

^c Band(B): π =+, seniority=3 states. Dominant configuration= $(\pi p_{1/2}^2 g_{9/2}^3)(\nu d_{5/2} g_{9/2}^{-1}), (\pi p_{1/2} g_{9/2}^5 f_{5/2}^{-1})$ or $(\pi g_{9/2}^5)$

(1995Gh08). Note that J values here are 2 units lower than suggested by 1994Gh07 in ${}^{66}Zn({}^{31}P,2p2n\gamma)$.

- ^d Band(C): π =-, seniority=1 states. Configuration=(π p_{1/2}g⁴_{9/2}) dominant (1994Ro08,1995Gh08).
- ^{*e*} Band(D): π =+, seniority=1 states. Configuration=($\pi p_{1/2}^2 g_{9/2}^3$) dominant (1994Ro08,1995Gh08).

	Adopted Levels, Gammas (continued)											
γ ⁽⁹³ Tc)												
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{c}	$I_{(\gamma+ce)}$	Comments		
391.84	1/2-	391.83 8	100	0.0	9/2+	M4		0.328		B(M4)(W.u.)=25.1 7 E _{γ} ,Mult.: from IT decay. Other E γ : 392.65 10 from ε decay.		
680.59	(7/2 ⁺)	680.68 <i>9</i>	100	0.0	9/2+	(M1+E2)	0.7 2	0.00208		B(M1)(W.u.)>1.1×10 ⁻⁶ ; B(E2)(W.u.)>0.00089 E _γ : weighted average of 680.5 <i>3</i> from $(\alpha, p2n\gamma)$ and 680.7 <i>l</i> from ε decay (59.7 s).		
1194.13	(≥7/2)	1194.1 [#] 1	100 [#]	0.0	9/2+							
1407.80 1434.42	(5/2 ⁻) (13/2) ⁺	1015.9 [#] <i>1</i> 1434.73 <i>22</i>	100 [#] 100	391.84 0.0	1/2 ⁻ 9/2 ⁺	[E2] E2				B(E2)(W.u.)>0.00060 B(E2)(W.u.)>0.00037 E _γ : weighted average of 1434.45 <i>13</i> from (α,p2nγ) and 1434.9 <i>I</i> from ε decay (59.7 s).		
1503.04	1/2-,3/2-	1111.2 ^a 1	100 ^{<i>a</i>}	391.84	$1/2^{-}$							
1515.95	(11/2)+	835.9 ^d 3	4	680.59	(7/2 ⁺)					E_{γ},I_{γ} : from (α ,p2n γ). Tentative isotopic assignment; reported in (α ,p2n γ) only.		
1799.00	1/2= 2/2=	1515.80 13	100	0.0	$9/2^+$	M1+E2	-16.6 +21-29			E_{γ}, I_{γ} : from ($\alpha, p2n\gamma$).		
1/88.09	1/2, $3/2$	1396.2^{-1} I	100#	391.84	1/2 0/2 ⁺							
1969.09	(7/2,9/2,11/2) $(5/2^-,7/2,9/2^-)$	$561.2^{\#} 2$ 1288.7 [#] 3	$100^{\#} 10$ $65^{\#} 11$	0.0 1407.80 680.59	$(5/2^{-})$ $(7/2^{+})$							
2133.70	5/2-,7/2-	725.9 [#] 2	100 [#]	1407.80	(5/2-)							
2145.45	(13/2) ⁻	629.44 <i>11</i>	48.1 <i>15</i>	1515.95	(11/2)+	E1				E_{γ}, I_{γ} : from ($\alpha, p2n\gamma$). Other I_{γ} : I(629 γ):I(711 γ)=10 4:11 4 in (⁴⁰ Ca 5my)		
		711.11 <i>10</i>	100.0 15	1434.42	(13/2)+	E1				I_{γ} : from (α ,p2n γ). E_{γ} : weighted average of 711.09 <i>11</i> from (α ,p2n γ) and 711.3 <i>3</i> from ε decay (59.7 s).		
2184.84	$(17/2)^+$	750.3 2	100	1434.42	(13/2)+	E2				B(E2)(W.u.)=3.5 7 E _γ : from (α,p2nγ).		
2185.16	(17/2) ⁻	0.31 2		2184.84	(17/2)+	[E1]			1.1 ^b 11	B(E1)(W.u.)=0.0003 +4-3 α : a calculated value of 8900 is quoted in 1978Br25; this would imply B(E1)(W.u.)=4.×10 ⁻⁸ 4. E _{γ} : from energy shift between prompt and delayed 750 γ peaks in (α ,p2n γ).		

 \neg

⁹³₄₃Tc₅₀-7

	Adopted Levels, Gammas (continued)												
						γ(⁹³ Tc) (co	ntinued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{C}	Comments				
2185.16	(17/2)-	39.75 10	100.0 14	2145.45	(13/2)-	[E2]		33.9 6	Other Ey: 0.44 2 (1976Br08) in $(\alpha, 2pn\gamma)$. B(E2)(W.u.)=0.63 3 E ₀ J ₂ ; from $(\alpha, p2n\gamma)$.				
		750.7 2	35.7 14	1434.42	$(13/2)^+$	M2+E3	-1.33 +16-36		$B(M2)(W.u.)=2.3\times10^{-6} 4; B(E3)(W.u.)=0.0112$ 12				
									E _γ ,I _γ : from (α,p2nγ). Mult.: possible parity-violating E2 component <6%; from (32 S,2n2pγ). 0° -180° asymmetry A _γ =4.1×10 ⁻⁴ 20 (2005Na28), 8.4×10 ⁻⁴ 27 (1996Ha13) from 45 Sc(52 Cr,2p2nγ).				
2257.73 2338.89	(7/2,9/2,11/2)	2257.7 [#] 1 1658.7 [#] 3	100 [#] 38 [#] 9	0.0 680.59	$9/2^+$ (7/2 ⁺)								
2431.08	(1/2,3/2)-	2338.7 [#] 2 642.9 ^a 5 928.3 ^a 2 1023.0 ^a 3	100 [#] 21 5.0 ^a 13 18.0 ^a 17 7.5 ^a 13	0.0 1788.09 1503.04 1407.80	9/2 ⁺ 1/2 ⁻ ,3/2 ⁻ 1/2 ⁻ ,3/2 ⁻ (5/2 ⁻)								
2490.2		2039.1 ^{<i>a</i>} 2 1809.6 ^{<i>a</i>} 4	$100^{a} 4$ 100^{a}	391.84 680.59	1/2 ⁻ (7/2 ⁺)								
2535.3	(21/2)+	350.3 3	100	2184.84	$(17/2)^+$	E2		0.01525	B(E2)(W.u.)=2.64 <i>18</i> E _{γ} : from (α ,p2n γ). Mult.: Q from $\gamma(\theta)$ in (α ,p2n γ); not M2 from RUL.				
2631.11	(7/2,9/2,11/2)	$1950.5^{\#} 2$	100 [#]	680.59 2535 3	$(7/2^+)$ $(21/2)^+$								
5200.9	(21/2)	1095.9 3	100.0 11	2185.16	$(17/2)^{-}$	E2			B(E2)(W.u.)>10 E_{γ} : from (α ,p2n γ). Mult.: Q from $\gamma(\theta)$ in (α ,p2n γ); not M2 from				
3888.4	(25/2 ⁻)	607.5 <i>3</i>	100	3280.9	(21/2 ⁻)	E2			KUL. B(E2)(W.u.)=4.75 18 E _γ : from (α ,p2nγ). Mult.: Q from $\gamma(\theta)$ in (α ,p2nγ); not M2 from				
3914.75	(7/2,9/2,11/2)+	1576.0 [#] 4 2720.4 [#] 3 3914 7 [#] 2	$16.8^{\#} 25$ $41.1^{\#} 21$ $100^{\#} 6$	2338.89 1194.13	(≥7/2) 9/2 ⁺				KUL.				
3927.8 4158.5	(19/2 ⁺) (7/2,9/2,11/2) ⁺	1743.1 3477.3 [#] 6	$100 \\ 24^{\#} 3$	2184.84 680.59	$(17/2)^+$ $(7/2^+)$								

From ENSDF

⁹³₄₃Tc₅₀-8

L

Adopted Levels, Gammas (continued)											
						$\gamma(^{93}\text{Tc})$) (continued)				
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments				
4158.5	$(7/2,9/2,11/2)^+$	4158.5 [#] 3	100 [#] 7	0.0	9/2+						
4187.4	$(7/2,9/2,11/2)^+$	4187.3 [#] 3	100 [#]	0.0	9/2+						
4257.3	$(21/2^+)$	329.6 10	6.0 5	3927.8	$(19/2^+)$	D <mark>&</mark>					
		1721.9 <i>3</i>	100.0 25	2535.3	$(21/2)^+$		E_{γ} : from (α ,p2n γ); 1723.0 in (⁴⁰ Ca,5p γ), 1722.4 in (³¹ P,2p2n γ).				
		# .	#		a (a 1		Mult.: $\Delta J=0$ transition from (⁴⁰ Ca,5p γ). $\Delta J=2$ assumed in (³¹ P,2p2n γ).				
4344.4	(7/2,9/2,11/2)	4344.3# 5	100"	0.0	9/2+						
4389.6	$(7/2,9/2,11/2)^+$	4389.5 [#] 3	100"	0.0	9/2+						
4608.9	(7/2,9/2,11/2)*	3928.0 [#] 5	49" 10	680.59	$(1/2^{+})$						
4610.0	(7/2 0/2 11/2)+	4608.9" <i>4</i>	100" 17	0.0	9/2						
4619.0	$(1/2,9/2,11/2)^+$	4618.9" 4	100"	0.0	9/21						
4668.63	(9/2,11/2)*	2329.7" 2	16" 3	2338.89	$(12/2)^{+}$						
		3234.3'' 2	100'' 5	1434.42	$(13/2)^{+}$						
		3988.0^{+} 3	$39^{"}$ 3	080.39	$(1/2^{+})$						
1760.6	(7/2) 0/2 (11/2)	$4008.1 \ 5$	$31 \ 3$ $100^{\#} 20$	680.50	9/2 (7/2 ⁺)						
4700.0	(7/2,9/2,11/2)	$4080.1 \ 5$ $4750 \ 6^{\#} \ 10$	100 29 $17^{\#} 0$	000.39	(1/2)						
4775.0	$(7/2) 0/2 (11/2)^+$	4739.0 10	17 - 9 $100^{\#} 17$	680.50	$\frac{9}{2}$						
4775.0	(7/2,3/2,11/2)	$4094.3 \ 5$ $4775 \ 0^{\#} \ 10$	$100 \frac{17}{10^{\#}}$	0.00	(1/2) $9/2^+$						
4937.8	$(7/2 \ 9/2 \ 11/2)^+$	4773.0 10 4257.2 [#] 5	$100^{\#} 24$	680 59	$(7/2^+)$						
+757.0	(1/2,)/2,11/2)	$4937.5^{\#}10$	$44^{\#}$ 15	0.0	(1/2)						
4955.0	$(7/2, 9/2, 11/2)^+$	4954.9 [#] 8	100#	0.0	$9/2^+$						
4973.9	$(25/2^+)$	2438.5 [#] 10	100 [#]	2535.3	$(21/2)^+$	E2	B(E2)(W.u.)>0.29				
							Mult.: Q from γ anisotropy in (⁴⁰ Ca,5p γ); not M2 from RUL.				
5076.4	$(23/2^+)$	818.2 10	100 4	4257.3	$(21/2^+)$	D&					
		1795.9 10	24 9	3280.9	$(21/2^{-})$						
5000 0	(7/2 0/2 11/2)+	2541.3 <i>10</i>	10.6	2535.3	$(21/2)^{+}$						
5298.2	(7/2,9/2,11/2)	4104.1" 10	100'' 33	1194.13	$(\geq 1/2)$						
5564 3	$(25/2^+)$	5297.9" 15 487 9 10	63" 20 54 9 18	0.0 5076 4	$\frac{9/2}{(23/2^+)}$	(M1)	B(M1)(Wu) = 0.0097.15				
5501.5	(25/2)	107.5 10	51.710	5070.1	(23/2)	(111)	Mult.: D from (⁴⁰ Ca.5py); $\Delta \pi$ =(no) from level scheme.				
		1306.3 10	100 4	4257.3	$(21/2^+)$	E2	B(E2)(W.u.)=0.56 9				
(017.4	(27/2+)	453 0 10	00 4 7 4	5564.0	(25/2+)		Mult.: Q from γ anisotropy in (⁴⁰ Ca,5p γ); not M2 from RUL.				
6017.4	$(21/2^{+})$	452.8 10	28.4 14	5564.3 3880 1	$(25/2^+)$ $(25/2^-)$	(E1)	$R(E1)(W_{H}) > 4.3 \times 10^{-7}$				
		2129.3 10	100 4	3000.4	(23/2)	(E1)	Mult : D from $({}^{40}Ca 5n\gamma)$: $\Lambda \pi = (ves)$ from level scheme				
							man. 2 nom (cu, pp), an-geo, nom rever serence.				

 $^{93}_{43}{
m Tc}_{50}$ -9

						γ (⁹³ Tc	c) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α^{c}	Comments
6053.3	(25/2 ⁻)	2164.9 10	100	3888.4	(25/2 ⁻)			Mult.: $\Delta J=0$ transition from (⁴⁰ Ca,5p γ).
6087.8	$(29/2^+)$	70.0 3	21.9 10	6017.4	$(27/2^+)$	(M1)	0.766 15	B(M1)(W.u.)=0.097 8
								E_{γ} : from (α , p2n γ) (where γ is placed differentily); /0.4 from $({}^{40}Ca 5m)$
								Mult.: D from (⁴⁰ Ca,5p γ); $\Delta\pi$ =(no) from level scheme.
		523.1 10	100.0 18	5564.3	$(25/2^+)$	E2		B(E2)(W.u.)=4.6 3
		Ø						Mult.: Q from γ anisotropy in (⁴⁰ Ca,5p γ); not M2 from RUL.
6106	1/2,3/2	2892 [@]	130	3213.5	3/2+,5/2+			
		4551 ^w	6 ^w	1555				
		4603 ^w	1.2	1503.04	1/2-,3/2-			
		5714 ^w	100	391.84	$1/2^{-}$			
6366	$1/2, 3/2, 5/2^{(-)}$	5974 ^w	100 ^w	391.84	$1/2^{-}$	(11)	0.01266.27	$D(M1)(W_{11}) = 0.210.22$
63/3.1	(27/2)	319.8 10	/.6 0	6053.3	(25/2)	$(\mathbf{M}1)$	0.01266 21	B(M1)(W.u.)=0.210 22 Mult : D from $\binom{40}{2}$ Ca 5pg(): $\Delta \pi$ -(no) from level scheme
		1399.2 10	5.9.8	4973.9	$(25/2^+)$	(E1)		B(E1)(W.u.)= 2.9×10^{-5} 5
		10,7,12 10	010 0	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	()	(21)		Mult.: D from (⁴⁰ Ca,5p γ); $\Delta \pi$ =(yes) from level scheme.
		2484.8 10	100.0 23	3888.4	$(25/2^{-})$	(M1)		B(M1)(W.u.)=0.0059 5
6454.0	(20/2-)	2565 6 10	100	2000 4	(25/2-)	52		Mult.: D from (⁴⁰ Ca,5p γ); $\Delta \pi$ =(no) from level scheme.
6454.0	(29/2)	2565.6 10	100	3888.4	(25/2)	E2		B(E2)(W.u.) > 0.37 Mult : O from a prisotrony in $({}^{40}Ce_{2}, 5m_{2})$; not M2 from BUI
6463	3/2	1675 <mark>@</mark>	7 5@	1788.00	1/2-3/2-			Mult. Q from γ anisotropy in (Ca, $p\gamma$), not M2 from KOL.
0405	5/2	4075	$12.5^{(0)}$	1555	1/2 ,5/2			
		4960 [@]	38@	1503.04	1/2-3/2-			
		$6071^{@}$	100 [@]	301.84	$1/2^{-}$, $3/2^{-}$			
6469	5/2	4914 [@]	100	1555	1/2			
6477	5/2 7/2	4922@	14@	1555				
5177	0,2,1,2	4974	14@	1503.04	1/2-3/2-			
		5796 [@]	$100^{@}$	680.59	$(7/2^+)$			
6531	3/2	4976 [@]	11@	1555	(12)			
5001	-,-	5337 [@]	3 [@]	1194.13	(>7/2)			
		6139 [@]	100 [@]	391.84	1/2-			
6576	3/2	3362 [@]	2.5@	3213.5	$3/2^+.5/2^+$			
	r	4434 [@]	11@	2142	, ,-,-			
		5021 [@]	10 [@]	1555				
		5073@	2 5@	1503.04	1/2- 3/2-			

10

$\gamma(^{93}\text{Tc})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
6576	3/2	6184 [@]	$100^{@}$	391.84	1/2-		
6596	$(3/2)^{-}$	4808@	33@	1788.09	$1/2^{-}.3/2^{-}$		
0070	(3/2)	5093@	55@	1503.04	$1/2^{-}$ $3/2^{-}$		
		5402@	63 [@]	110/ 13	(>7/2)		
		5402	100@	201.04	$(\geq 1/2)$		
6600		6204 ⁻	100 -	391.84	1/2		
6600	$1/2, 3/2, 5/2^{(-)}$	5097	61	1503.04	1/2-,3/2-		
	(21/2+)	6208 ^w	100	391.84	1/2-	0.01	
6670.6	$(31/2^{+})$	582.7 10	100	6087.8	(29/2+)	(M1)	B(M1)(W.u.)=0.476
(057.1	(20/2-)	402 1 10	0.4.7	6454.0	(20/2-)		Mult.: D from ($^{+0}$ Ca,Sp γ); $\Delta\pi$ =(no) from level scheme.
6857.1	(29/2)	403.1 10	9.4 /	6454.0	(29/2)	(1)	Mult.: assigned as $\Delta J=0$ transition in ($((a, 5p\gamma))$).
		485.8 10	100.0 22	03/3.1	(27/2)	(M1)	B(M1)(W.u.)=0.191 I2
		2068 0 10	257	3888 /	$(25/2^{-})$	$(\mathbf{F2})$	Mult.: D from (*Ca, spy); $\Delta \pi = (no)$ from level scheme. B(E2)(W ₁₁)=0.0024.7
		2900.9 10	2.57	5000.4	(23/2)	(L2)	Mult : O from $({}^{40}\text{Ca} 5\text{m})$: $\Lambda\pi$ -(no) from level scheme
7282.2	$(33/2^+)$	611 5 10	100.0.20	6670.6	$(31/2^+)$	(M1)	$B(M1)(W_{11}) > 0.22$
, 202.2	(33/2)	011.0 10	100.0 20	0070.0	(31/2)	(111)	Mult.: D from $({}^{40}Ca.5n\gamma)$: $\Lambda \pi = (no)$ from level scheme.
		1194.2 10	2.6 12	6087.8	$(29/2^+)$	[E2]	B(E2)(W.u.)>0.56
7373.5	$(31/2^{-})$	516.5 10	100.0 19	6857.1	$(29/2^{-})$	(M1)	Mult.: D from (⁴⁰ Ca,5py); $\Delta \pi$ =(no) from level scheme.
		1000.4 10	36.9 14	6373.1	$(27/2^{-})$	E2	B(E2)(W.u.)=6.8 7
							Mult.: Q from γ anisotropy in (⁴⁰ Ca,5p γ); not M2 from RUL.
7811.9	$(35/2^+)$	529.7 10	100	7282.2	$(33/2^+)$	(M1)	B(M1)(W.u.)=0.24 5
							Mult.: D from $({}^{40}Ca,5p\gamma)$; $\Delta\pi$ =(no) from level scheme.
7880.2	$(33/2^{-})$	506.8 10	100.0 18	7373.5	$(31/2^{-})$	(M1)	B(M1)(W.u.) > 0.50
							Mult.: D from $({}^{40}Ca,5p\gamma)$; $\Delta\pi$ =(no) from level scheme.
		1023.3 10	15.0 9	6857.1	$(29/2^{-})$		
94976	$(25/2^{-})$	1209.5 10	4.0 13	6670.6	$(31/2^+)$		Mult O for $(07.2.1, (07.5.1)$ doublet
8487.6 8407.5	(35/2)	607.3 10	100 0 18	7880.2	(33/2)	(M1)	Mult=Q for $60/.3\gamma+60/.5\gamma$ doublet. B(M1)(Wu)=0.21 4
0497.5	(33/2)	017.2 10	100.0 18	7880.2	(33/2)	(111)	D(N11)(W.u.) = 0.21 4 Mult : D from $({}^{40}C_{2}, 5m)$: $\Lambda \pi = (n_0)$ from level scheme
		1124 1 10	5010	7373 5	$(31/2^{-})$	(F2)	B(F2)(W μ)=1.4.4
		1124.1 10	5.0 10	1515.5	(31/2)	(L2)	Mult : (Ω) from γ anisotropy in (⁴⁰ Ca 5py): not M2 from RUL
		1215.2 10	3.8 15	7282.2	$(33/2^+)$		Null. (Q) from y anisotropy in $(-ca, 5py)$, not $N2$ from RCD .
8852.3	$(37/2^{-})$	354.8 10	100.0 20	8497.5	$(35/2^{-})$	(M1)	B(M1)(W.u.)=0.44 4
							Mult.: D from (⁴⁰ Ca,5p γ); $\Delta \pi$ =(no) from level scheme.
		972.1 10	32.2 17	7880.2	$(33/2^{-})$	E2	B(E2)(W.u.)=7.4 8
							Mult.: Q from γ anisotropy in (⁴⁰ Ca,5p γ); not M2 from RUL if T _{1/2} <0.83 ps.
		1040.3 10	26.8 14	7811.9	$(35/2^+)$	(E1)	$B(E1)(W.u.)=6.9\times10^{-5}$ 7
							Mult.: D from (⁴⁰ Ca,5p γ); $\Delta \pi$ =(yes) from level scheme.

From ENSDF

 $^{93}_{43}$ Tc₅₀-11

$\gamma(^{93}\text{Tc})$ (continued)

E_i (level)	\mathbf{J}^{π}_{i}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	Comments
9139.7	(37/2-)	652.1 10	100	8487.6	(35/2-)		
9372.4	$(37/2^{-})$	874.9 10	100	8497.5	$(35/2^{-})$	D&	
9420.6	(39/2 ⁻)	568.2 10	100.0 22	8852.3	$(37/2^{-})$	(M1)	B(M1)(W.u.)=0.037 13
							Mult.: D from (⁴⁰ Ca,5p γ); $\Delta \pi$ =(no) from level scheme.
		923.2 10	25.9 14	8497.5	$(35/2^{-})$	E2	B(E2)(W.u.)=2.7 10
		_	_				Mult.: Q from γ anisotropy in (⁴⁰ Ca,5p γ); not M2 from RUL.
9898	$3/2^{+}$	8110 [@]	28 [@] 15	1788.09	$1/2^{-}, 3/2^{-}$		
		8395 [@]	57 [@] 15	1503.04	$1/2^{-}, 3/2^{-}$		
		9506 [@]	100 [@] 15	391.84	$1/2^{-}$		
10272.2	$(39/2^+)$	2460.2 10	100	7811.9	$(35/2^+)$	E2	B(E2)(W.u.)>0.19
							Mult.: Q from γ anisotropy in (⁴⁰ Ca,5p γ); not M2 from RUL.
11097.8	$(41/2^{-})$	2245.5 10	100	8852.3	$(37/2^{-})$		
11526.4	$(43/2^{-})$	428.6 10	18 6	11097.8	$(41/2^{-})$	(M1)	Mult.: d from γ anisotropy in (⁴⁰ Ca,5p γ); $\Delta \pi$ =(no) from level scheme.
		2105.8 10	100 10	9420.6	$(39/2^{-})$	E2	B(E2)(W.u.)>0.16
							Mult.: Q from γ anisotropy in (⁴⁰ Ca,5p γ); not M2 from RUL.
12218.2	$(43/2^+)$	1946.0 <i>10</i>	100	10272.2	$(39/2^+)$	(E2)	Mult.: Q from (⁴⁰ Ca,5p γ); $\Delta \pi$ =(no) from level scheme.
13258.3	(41/2,43/2 ⁻)	3837.6 10	100	9420.6	(39/2 ⁻)	D,E2	Mult.: not M2 from RUL.

[†] From ⁵⁸Ni(⁴⁰Ca,5p γ), except as noted. ΔE for $E\gamma$ is 0.2-1.0 keV, depending on $E\gamma$ and $I\gamma$; evaluator has assigned $\Delta E=1$ keV to all $E\gamma$ adopted from this reaction. [‡] From ⁹²Mo(α ,p2n γ), if not indicated otherwise.

From ⁹³Ru ε decay (59.7 s). @ Observed in ⁹²Mo(p, γ) only; E γ from level energy difference. & From γ anisotropy ratio in ⁵⁸Ni(⁴⁰Ca,5p γ). ^a From ⁹³Ru ε decay (10.8 s). ^b From ⁹²Mo(α ,p2n γ).

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. ^{*d*} Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

⁹³₄₃Tc₅₀

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

⁹³₄₃Tc₅₀

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{93}_{43}{
m Tc}_{50}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level

⁹³₄₃Tc₅₀

⁹³₄₃Tc₅₀