92 Mo(p, γ) 1983Ay01,1973Cl03,1969Ej01 | History | | | | | | | | | | | |-----------------|-----------------|----------------------|------------------------|--|--|--|--|--|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | | | | | | Full Evaluation | Coral M. Baglin | NDS 112, 1163 (2011) | 15-Dec-2010 | | | | | | | | 1983Ay01: E=2.2 MeV to 2.7 MeV, FWHM=0.7 keV, 94.1% 92 Mo target, Ge(Li) and NaI detectors; measured E γ , branching, $\gamma(\theta)$, excitation functions. 1973C103: E=2.4 MeV to 3.0 MeV,Ge(Li) detector in three-crystal pair spectrometer for average γ yield function;Ge(Li)-NaI p- γ coin; average resonance γ spectroscopy. 1969Ej01: $E\approx5.79-5.98$ MeV and 6.50-6.65 MeV, 97.6% ⁹²Mo target, Ge(Li) detectors; measured $E\gamma$, $I\gamma$ on and off resonance for E(p)=5.874 IAS and in vicinity of expected 6.54 MeV IAS. ## ⁹³Tc Levels | E(level) [†] | ${\rm J}^{\pi \ddagger}$ | $E(p)(lab)^{\&}$ | Comments | | |-----------------------|--------------------------|------------------|--|--| | 0 | 9/2+ @ | - | | | | 390 <i>I</i> | 1/2-@ | | | | | 680 <i>I</i> | 5/2,7/2# | | J^{π} : calculated yield is too high for $J^{\pi}=1/2^-$ and $J=3/2$ and too low for $J^{\pi}=9/2^+$, but does not rule out $J^{\pi}=1/2^+$. | | | 1193 <i>1</i> | 5/2+# | | J ^{π} : Note: this value is inconsistent with log ft =7.4 from (9/2) ⁺ in ⁹³ Ru ε decay to this state. Yield also consistent with 3/2 ⁺ and possibly 1/2 ⁺ , but 1193 γ feeds 9/2 ⁺ g.s. possibly, this is an unresolved doublet In this study. ADOPTED J≥7/2. | | | 1406 <i>I</i> | 1/2-,3/2-# | | J^{π} : note that adopted value is $(5/2^{-})$. calculated yields for $J^{\pi}=1/2^{-}$ and $3/2^{-}$ are much higher than experimental yield; those for all other J^{π} are significantly lower. adopted $J^{\pi}=(5/2^{-})$. | | | 1499 2 | $1/2^-, 3/2^-$ | | J^{π} : experimental and calculated yields are In poor agreement for $J \le 7/2$ and for $J^{\pi} = 9/2^{+}$. | | | 1555 2 | 1/2-,3/2-# | | J^{π} : experimental and calculated yields are In reasonable agreement for $J^{\pi}=1/2^{-}$ only. | | | 1787 2 | 1/2-,3/2-@ | | J^{π} : experimental and calculated yields are In reasonable agreement for $J^{\pi}=3/2^{+}$ only. | | | 2142 2 | | | J^{π} : experimental and calculated yields are In reasonable agreement for $J^{\pi}=1/2^+$, $3/2^+$, $5/2^-$ and $7/2^-$. | | | 2429 2 | ≤5/2 [#] | | J^{π} : experimental and calculated yields are In reasonable agreement for $J^{\pi}=1/2^{+}$ and $3/2^{+}$. | | | 2563 3 | 3/2+,5/2+@ | | J^{π} : experimental and calculated yields are In reasonable agreement for $J^{\pi}=1/2^-$ and $3/2^-$ only. | | | 3213.5 25 | | | E(level): from Adopted Levels. | | | 6105 | 1/2,3/2 | 2040 | | | | 6365
6462 | 1/2,3/2,5/2 | 2303
2401 | | | | 6469 | 3/2
5/2 | 2401 | | | | 6477 | 5/2,7/2 | 2416 | | | | 6530 | 3/2 | 2470 | | | | 6577 | 3/2 | 2517 | | | | 6597 | 3/2 | 2537 | | | | 6599
9898 | 1/2,3/2,5/2 | 2540
5874 | E(n)(lah): from 1060E;01 | | | 7070 | $(1/2,3/2,5/2^{-})$ | 3014 | E(p)(lab): from 1969Ej01.
J^{π} : primary γ to $J^{\pi}=1/2^{-}$. | | | | | | Analog of $3/2^{+}$ 93 Mo(1492 level). | | [†] From 1973Cl03 if E<6000; from E(p) at resonance and S(p)=4086.5 10 (2003Au03, 2009AuZZ) for E≥6000. [‡] From $\gamma(\theta)$ (1983Ay01), except As noted. [#] Proposed by 1973Cl03 based on comparison between experimental and calculated yields in average resonance γ spectroscopy, assuming $J^{\pi}(390 \text{ level})=1/2^{-}$. However, agreement between calculated and observed yield is unconvincing in many cases, and evaluator does not consider these values to be a reliable basis for assigning J^{π} . [®] From Adopted Levels. [&]amp; E(p)(lab) for resonance (1983Ay01). ΔE not stated by authors. #### 92**Mo**(**p**, γ) 1983Ay01,1973Cl03,1969Ej01 (continued) From ENSDF # $\gamma (^{93}\text{Tc})$ | E_i (level) | \mathtt{J}_i^{π} | E_{γ}^{\dagger} | ${\rm I}_{\gamma}^{\ddagger}$ | \mathbf{E}_f | J^π_f | |---------------|----------------------|------------------------|-------------------------------|----------------|-------------------| | 680 | 5/2,7/2 | 680 | | 0 | 9/2+ | | 1193 | 5/2 ⁺ | 1193 | | 0 | 9/2 ⁺ | | 1406 | 1/2-,3/2- | 1016 | | 390 | 1/2- | | 1499 | 1/2-,3/2- | 1109 | | 390 | 1/2- | | 1787 | 1/2-,3/2- | 1397 | | 390 | 1/2- | | 2429 | ≤5/2 | 930 <mark>@</mark> | | 1499 | 1/2-,3/2- | | | , | 2039 | | 390 | 1/2- | | 6105 | 1/2,3/2 | 2891 | 11 | 3213.5 | , | | | | 4550 | 5 | 1555 | $1/2^{-},3/2^{-}$ | | | | 4606 | 1 | 1499 | $1/2^-, 3/2^-$ | | | | 5715 | 82 | 390 | 1/2- | | 6365 | 1/2,3/2,5/2 | 5975 | 100 | 390 | $1/2^{-}$ | | 6462 | 3/2 | 4675 | 6 | 1787 | $1/2^-,3/2^-$ | | | | 4907 | 10 | 1555 | $1/2^-, 3/2^-$ | | | | 4963 | 3 | 1499 | $1/2^-,3/2^-$ | | | | 6072 | 80 | 390 | $1/2^{-}$ | | 6469 | 5/2 | 4914 | 100 | 1555 | $1/2^-,3/2^-$ | | 6477 | 5/2,7/2 | 4922 | 11 | 1555 | $1/2^-,3/2^-$ | | | | 4978 | 11 | 1499 | $1/2^-,3/2^-$ | | | | 5797 | 78 | 680 | 5/2,7/2 | | 6530 | 3/2 | 4975 | 10 | 1555 | $1/2^-,3/2^-$ | | | | 5337 | 3 | 1193 | 5/2+ | | | | 6140 | 87 | 390 | $1/2^{-}$ | | 6577 | 3/2 | 3363 | 2 | 3213.5 | | | | | 4435 | 9 | 2142 | | | | | 5022 | 8 | 1555 | $1/2^-,3/2^-$ | | | | 5078 | 2 | 1499 | $1/2^-,3/2^-$ | | | | 6187 | 80 | 390 | $1/2^{-}$ | | 6597 | 3/2 | 4810 | 13 | 1787 | $1/2^-,3/2^-$ | | | | 5098 | 22 | 1499 | $1/2^-,3/2^-$ | | | | 5404 | 25 | 1193 | 5/2+ | | | | 6207 | 40 | 390 | 1/2- | | 6599 | 1/2,3/2,5/2 | 5100 | 38 | 1499 | $1/2^-,3/2^-$ | | | | 6209 | 62 | 390 | 1/2- | | 9898 | $(1/2,3/2,5/2^{-})$ | 8110 | 15 [#] 8 | 1787 | $1/2^-,3/2^-$ | | | | 8398 | 31 # 8 | 1499 | $1/2^-,3/2^-$ | | | | 9507 | 54 [#] 8 | 390 | 1/2- | | | | | | | | $^{^\}dagger$ From level energy difference, except as noted; ΔE not stated by authors. ‡ % photon branching for each level; from 1983Ay01, unless indicated otherwise. [#] From 1969Ej01. [@] Placement of transition in the level scheme is uncertain. ## 92Mo(p,γ) 1983Ay01,1973Cl03,1969Ej01 Legend ## Level Scheme Intensities: % photon branching from each level ---- → γ Decay (Uncertain) $^{93}_{43}{\rm Tc}_{50}$