92 Mo(p, γ) 1983Ay01,1973Cl03,1969Ej01

History										
Type	Author	Citation	Literature Cutoff Date							
Full Evaluation	Coral M. Baglin	NDS 112, 1163 (2011)	15-Dec-2010							

1983Ay01: E=2.2 MeV to 2.7 MeV, FWHM=0.7 keV, 94.1% 92 Mo target, Ge(Li) and NaI detectors; measured E γ , branching, $\gamma(\theta)$, excitation functions.

1973C103: E=2.4 MeV to 3.0 MeV,Ge(Li) detector in three-crystal pair spectrometer for average γ yield function;Ge(Li)-NaI p- γ coin; average resonance γ spectroscopy.

1969Ej01: $E\approx5.79-5.98$ MeV and 6.50-6.65 MeV, 97.6% ⁹²Mo target, Ge(Li) detectors; measured $E\gamma$, $I\gamma$ on and off resonance for E(p)=5.874 IAS and in vicinity of expected 6.54 MeV IAS.

⁹³Tc Levels

E(level) [†]	${\rm J}^{\pi \ddagger}$	$E(p)(lab)^{\&}$	Comments	
0	9/2+ @	-		
390 <i>I</i>	1/2-@			
680 <i>I</i>	5/2,7/2#		J^{π} : calculated yield is too high for $J^{\pi}=1/2^-$ and $J=3/2$ and too low for $J^{\pi}=9/2^+$, but does not rule out $J^{\pi}=1/2^+$.	
1193 <i>1</i>	5/2+#		J ^{π} : Note: this value is inconsistent with log ft =7.4 from (9/2) ⁺ in ⁹³ Ru ε decay to this state. Yield also consistent with 3/2 ⁺ and possibly 1/2 ⁺ , but 1193 γ feeds 9/2 ⁺ g.s. possibly, this is an unresolved doublet In this study. ADOPTED J≥7/2.	
1406 <i>I</i>	1/2-,3/2-#		J^{π} : note that adopted value is $(5/2^{-})$. calculated yields for $J^{\pi}=1/2^{-}$ and $3/2^{-}$ are much higher than experimental yield; those for all other J^{π} are significantly lower. adopted $J^{\pi}=(5/2^{-})$.	
1499 2	$1/2^-, 3/2^-$		J^{π} : experimental and calculated yields are In poor agreement for $J \le 7/2$ and for $J^{\pi} = 9/2^{+}$.	
1555 2	1/2-,3/2-#		J^{π} : experimental and calculated yields are In reasonable agreement for $J^{\pi}=1/2^{-}$ only.	
1787 2	1/2-,3/2-@		J^{π} : experimental and calculated yields are In reasonable agreement for $J^{\pi}=3/2^{+}$ only.	
2142 2			J^{π} : experimental and calculated yields are In reasonable agreement for $J^{\pi}=1/2^+$, $3/2^+$, $5/2^-$ and $7/2^-$.	
2429 2	≤5/2 [#]		J^{π} : experimental and calculated yields are In reasonable agreement for $J^{\pi}=1/2^{+}$ and $3/2^{+}$.	
2563 3	3/2+,5/2+@		J^{π} : experimental and calculated yields are In reasonable agreement for $J^{\pi}=1/2^-$ and $3/2^-$ only.	
3213.5 25			E(level): from Adopted Levels.	
6105	1/2,3/2	2040		
6365 6462	1/2,3/2,5/2	2303 2401		
6469	3/2 5/2	2401		
6477	5/2,7/2	2416		
6530	3/2	2470		
6577	3/2	2517		
6597	3/2	2537		
6599 9898	1/2,3/2,5/2	2540 5874	E(n)(lah): from 1060E;01	
7070	$(1/2,3/2,5/2^{-})$	3014	E(p)(lab): from 1969Ej01. J^{π} : primary γ to $J^{\pi}=1/2^{-}$.	
			Analog of $3/2^{+}$ 93 Mo(1492 level).	

[†] From 1973Cl03 if E<6000; from E(p) at resonance and S(p)=4086.5 10 (2003Au03, 2009AuZZ) for E≥6000.

[‡] From $\gamma(\theta)$ (1983Ay01), except As noted.

[#] Proposed by 1973Cl03 based on comparison between experimental and calculated yields in average resonance γ spectroscopy, assuming $J^{\pi}(390 \text{ level})=1/2^{-}$. However, agreement between calculated and observed yield is unconvincing in many cases, and evaluator does not consider these values to be a reliable basis for assigning J^{π} .

[®] From Adopted Levels.

[&]amp; E(p)(lab) for resonance (1983Ay01). ΔE not stated by authors.

92**Mo**(**p**, γ) 1983Ay01,1973Cl03,1969Ej01 (continued)

From ENSDF

$\gamma (^{93}\text{Tc})$

E_i (level)	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{\ddagger}$	\mathbf{E}_f	J^π_f
680	5/2,7/2	680		0	9/2+
1193	5/2 ⁺	1193		0	9/2 ⁺
1406	1/2-,3/2-	1016		390	1/2-
1499	1/2-,3/2-	1109		390	1/2-
1787	1/2-,3/2-	1397		390	1/2-
2429	≤5/2	930 <mark>@</mark>		1499	1/2-,3/2-
	,	2039		390	1/2-
6105	1/2,3/2	2891	11	3213.5	,
		4550	5	1555	$1/2^{-},3/2^{-}$
		4606	1	1499	$1/2^-, 3/2^-$
		5715	82	390	1/2-
6365	1/2,3/2,5/2	5975	100	390	$1/2^{-}$
6462	3/2	4675	6	1787	$1/2^-,3/2^-$
		4907	10	1555	$1/2^-, 3/2^-$
		4963	3	1499	$1/2^-,3/2^-$
		6072	80	390	$1/2^{-}$
6469	5/2	4914	100	1555	$1/2^-,3/2^-$
6477	5/2,7/2	4922	11	1555	$1/2^-,3/2^-$
		4978	11	1499	$1/2^-,3/2^-$
		5797	78	680	5/2,7/2
6530	3/2	4975	10	1555	$1/2^-,3/2^-$
		5337	3	1193	5/2+
		6140	87	390	$1/2^{-}$
6577	3/2	3363	2	3213.5	
		4435	9	2142	
		5022	8	1555	$1/2^-,3/2^-$
		5078	2	1499	$1/2^-,3/2^-$
		6187	80	390	$1/2^{-}$
6597	3/2	4810	13	1787	$1/2^-,3/2^-$
		5098	22	1499	$1/2^-,3/2^-$
		5404	25	1193	5/2+
		6207	40	390	1/2-
6599	1/2,3/2,5/2	5100	38	1499	$1/2^-,3/2^-$
		6209	62	390	1/2-
9898	$(1/2,3/2,5/2^{-})$	8110	15 [#] 8	1787	$1/2^-,3/2^-$
		8398	31 # 8	1499	$1/2^-,3/2^-$
		9507	54 [#] 8	390	1/2-

 $^{^\}dagger$ From level energy difference, except as noted; ΔE not stated by authors. ‡ % photon branching for each level; from 1983Ay01, unless indicated otherwise.

[#] From 1969Ej01.

[@] Placement of transition in the level scheme is uncertain.

92Mo(p,γ) 1983Ay01,1973Cl03,1969Ej01

Legend

Level Scheme

Intensities: % photon branching from each level

---- → γ Decay (Uncertain)

 $^{93}_{43}{\rm Tc}_{50}$