${ }^{92} \mathrm{Mo}(\mathrm{d}, \mathrm{n}) \quad$ 1971Ri12,1971Bo33,1970Za09

$\frac{\text { Type }}{\text { Full Evaluation }} \frac{\text { Author }}{\text { Coral M. Baglin }} \quad$| History |
| :---: |
| NDS 112, 1163 (2011) |

Target isospin $=4$.
1971Ri12: $\mathrm{E}=12 \mathrm{MeV}$; FWHM=1.9 ns tof neutron detection (FWHM $\approx 100 \mathrm{keV}$ for $\mathrm{g} . \mathrm{s}$. and $\approx 60 \mathrm{keV}$ for $\mathrm{E}(\mathrm{level}) \approx 5 \mathrm{MeV}), \geq 99 \%$
${ }^{92}$ Mo target, $\theta(\mathrm{lab})=15^{\circ}-70^{\circ}$ (in 5° steps), NE213 liquid scintillators, pulse-shape discrimination; measured $\sigma(\theta)$; DWBA analysis (normalization factor $=1.48$).
1971Bo33: $\mathrm{E}=6.25 \mathrm{MeV}$ and $7.0 \mathrm{MeV} ; \mathrm{FWHM}=1.2 \mathrm{~ns}$ tof neutron detection (FWHM $\approx 100 \mathrm{keV}$ for g.s.), θ (c.m.) $=0^{\circ}$ to at least 30° (to 90° for strongest states); measured $\sigma(\theta)$; DWBA analysis (normalization factor $=1.48$).
1970Za09: $\mathrm{E}=12 \mathrm{MeV}$; neutron tof; $\theta(\mathrm{lab})=15.5^{\circ}, 20^{\circ}, 25^{\circ}$, also $30^{\circ}, 35^{\circ}, 40^{\circ}, 45^{\circ}$ for g.s. analog only; measured $\sigma(\theta)$ for IAS; DWBA analysis. See also 1971Za05 (for further analysis of data from 1970Za09).
${ }^{93} \mathrm{Tc}$ Levels

$\mathrm{E}\left(\right.$ level) ${ }^{\dagger}$	L^{\ddagger}	$S^{\#}$	Comments
0	4	0.72	
39020	1	0.23	S : if $\mathrm{J}=1 / 2$.
$1200{ }^{\text {@ }}$			
152020	1	0.075,0.034	
178020	1	0.10,0.045	
2590 @	2	0.011	
321020	2	0.023	E (level): 3170 from 1971Ri12.
337020	2	0.30	S: 0.62 if $\mathrm{J}=3 / 2$ (1971Bo33).
3900 @	0	0.024	
395020			E(level): 3980 in 1971Ri12. $\mathrm{L}, \mathrm{S}: \mathrm{L}=3, \mathrm{~S}=0.060\left(\mathrm{f}_{5 / 2}\right)$ or $0.031\left(\mathrm{f}_{7 / 2}\right)$ from 7 MeV data of $1971 \mathrm{Bo33}$; $\mathrm{L}=(0)$, S undetermined (1971Ri12).
411020	0	0.096	
$4690^{@}$			
477020	2	0.069,0.039	
$4900{ }^{\text {@ }}$	2	0.029,0.020	
506020	2	0.032,0.019	E (level): 5010 in 1971Ri12.
518020			E (level),L,S: 1971Ri12 report $\mathrm{E}=5150+5180$ doublet for which $\mathrm{L}=2$ and $\mathrm{S}=0.064,0.037$, respectively, for $\mathrm{d}_{3 / 2}, \mathrm{~d}_{5 / 2}$ transfer. 1971Bo33, however, obtain $\mathrm{L}=0$ based on a more detailed angular distribution.
535020	2	0.091,0.052	E(level): 5300 in 1971Ri12. L: 1971Bo33 determine $\mathrm{L}=0$ for this state, but this disagrees with $\mathrm{L}=2$ in $\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$ for a 530512 state.
$\begin{aligned} & 549020 \\ & 5500 @ \end{aligned}$	0	0.066	E(level): 5440 in 1971Ri12.
5620 @	0	0.036	
$5680{ }^{@}$	0	0.018	
5780 @	2	0.064,0.037	
5930@	0	0.074	
8397\&	2^{a}	0.32^{a}	$\mathrm{J}^{\pi}: 5 / 2^{+}$if analog of ${ }^{93} \mathrm{Mo}(\mathrm{g} . \mathrm{s}$.$) .$
9332\&	0^{a}	$0.031{ }^{a}$	$\mathrm{J}^{\pi}: 1 / 2^{+}$analog of ${ }^{93} \mathrm{Mo}(943$ level).
$9780^{\&}$			Analog of $7 / 2^{+}{ }^{93} \mathrm{Mo}(1363$ level $)$. S shown for this level in 1970Za09 actually belongs with the $\mathrm{d}_{3 / 2}$ analog state.
$9898{ }^{\text {\& }}$	2^{a}	0.18^{a}	S : if $\mathrm{J}=3 / 2$. Analog of ${ }^{93} \mathrm{Mo}(1492$ level).

${ }^{93} \mathrm{Tc}$ Levels (continued)
${ }^{\dagger}$ From 1971Bo33, if not indicated otherwise.

* Based on DWBA analysis of $\sigma(\theta)$; from 1971Ri12, except as noted.
\# From DWBA analysis (1971Ri12) assuming $\mathrm{g}_{9 / 2}$ and $\mathrm{d}_{5 / 2}$ orbitals for $\mathrm{L}=4$ and 2 transfer, respectively. Data from 1971 Ri12 and 1971Bo33 are in good agreement for strongly populated levels and agree within a factor of ≤ 2 for weaker states.
${ }^{\circledR}$ From 1971Ri12; absent in 1971Bo33.
\& Observed by 1970Za09; E from Adopted Levels (E not stated by authors).
${ }^{a}$ From DWBA analysis of $\sigma(\theta)$ (1970Za09) assuming the form factor of the transferred proton to be the same as that of the neutron in the parent analog state.

