#### $^{93}$ Rb $\beta^-$ decay 1977Bi01

| History         |                 |                      |                        |  |  |  |  |  |
|-----------------|-----------------|----------------------|------------------------|--|--|--|--|--|
| Туре            | Author          | Citation             | Literature Cutoff Date |  |  |  |  |  |
| Full Evaluation | Coral M. Baglin | NDS 112, 1163 (2011) | 15-Dec-2010            |  |  |  |  |  |

Parent: <sup>93</sup>Rb: E=0;  $J^{\pi}=5/2^{-}$ ;  $T_{1/2}=5.84 \text{ s } 2$ ;  $Q(\beta^{-})=7465 9$ ;  $\%\beta^{-}$  decay=100.0

Others: 1970MaZC, 1972Am01, 1972Mc04, 1974Ac04, 1975Br03, 1978St02, 1978Wo15, 1978Wu04, 1979Bo26, 1980De02, 1983Ia02, 1986Ka20, 1988Al42, 1988GrZX, 1992Pr03, 1996Gr20, 1996GrZZ, 1996GrZY, 2004Sa69.

2004Sa69: <sup>93</sup>Rb from <sup>235</sup>U(n,F); KUR-ISOL on-line separator; BaF<sub>2</sub> detectors (+90°, +135°, -135°); 30-keV <sup>93</sup>Rb ions implanted In Fe foil; 0.2 tesla magnetic field; measured T<sub>1/2</sub>(213 LEVEL), g-factor(213 level) using TDPAC.

1996Gr20, 1997Gr09: total absorption  $\gamma$  spectrometer (TAGS) (NaI(Tl) well detector with Si e-detector in well) operated in singles or in  $4\pi\gamma$ - $\beta$  coin mode, summed-E $\gamma$  resolution $\approx$ 5%; deduced  $\beta^-$  feeding to g.s. (1996Gr20; supersedes 1996GrZZ),  $\beta^-$  feeding to excited states (1997Gr09; supersedes 1996GrZY).

1979Bo26: curved crystal spectrometer; measured  $E\gamma$  for two lines.

1977Bi01: Ge(Li); measured E $\gamma$ , I $\gamma$  (243 lines),  $\gamma\gamma$  coin.

1975Br03: Ge(Li); measured E $\gamma$ , I $\gamma$  (69 lines), E $\beta$ , I $\beta$ ,  $\gamma\gamma$  coin,  $\beta\gamma$  coin.

1974Ac04: Ge(Li) and Si(Li); measured E $\gamma$ , I $\gamma$  (45 lines),  $\gamma\gamma$  coin,  $\alpha$ (K)exp (relative to <sup>85</sup>Kr(304 $\gamma$ ) and <sup>85</sup>Rb(151 $\gamma$ )).

The adopted decay scheme is essentially that of 1977Bi01. For E(level)<4100, it is supported by γγ-coin information. The schemes proposed by 1977Bi01 and 1975Br03 are in excellent agreement; however, of the 19 levels proposed in 1974Ac04, only 7 are common to the scheme of 1977Bi01. Total unplaced Iγ is≈0.40% in 1977Bi01.

- For the decay scheme of 1977Bi01, negative  $\beta^-$  feeding of 2460, 2774, 2886 levels is implied by I $\gamma$  imbalance. Also, the distribution of  $\beta^-$  strength implied by their decay scheme differs from that indicated by the TAGS data of 1997Gr09, in that their scheme significantly overestimates  $\beta^-$  strength to E(level)=0.2-2.2 MeV, underestimates it to E(level)=2.9-3.6 MeV, 4.1-4.4 MeV and  $\approx$ 5.2 MeV, and grossly overestimates it to E(level) $\geq$ 5.4 MeV. From their total  $\gamma$  absorption measurements, 1988Al42 drew conclusions which were qualitatively similar to those of 1997Gr09 concerning the  $\beta^-$  strength distribution.
- Consequently, the evaluator has modified the scheme from 1977Bi01, as follows: (i) the placement is indicated as tentative for all gammas (except the 4645 $\gamma$ ) deexciting levels which have E>5500 (presumably, all of these are misplaced since each individual I $\gamma$  exceeds the total  $\beta^-$  branching to the relevant level and no gammas are placed so they feed these levels); (ii) gammas deexciting these levels in 1977Bi01 have been relocated by the evaluator whenever possible (based on E $\gamma$  alone) this affects 981.1 $\gamma$ , 1359.9 $\gamma$ , 1533.8 $\gamma$ , 1753.6 $\gamma$ , 1983.2 $\gamma$ , 3585.4 $\gamma$ , 4004.5 $\gamma$ ; (iii) when calculating intensity balance, all I $\gamma$  (except I(4645 $\gamma$ )) originating from E(level)>5500 have been ignored (total I $\gamma$ =4.9%); (iv) a new level (or group of levels) has been introduced at≈4250 keV and at≈5200 keV, although no unique assignment of gammas to the level(s) can be suggested at this time; (v) the previously unplaced 405 $\gamma$  has been placed from the 3603 level, and the 1992 $\gamma$  (from the 5396 level in 1977Bi01) has been relocated deexciting the 4038 level (based on E $\gamma$  and intensity balance at the 5396 level); (vi) placement of the 4271 $\gamma$  from the 5414 level is shown as tentative, based on intensity balance at the 5414 level cf. I $\beta$  from TAGS.
- These changes result in a scheme which does not imply negative  $\beta^-$  feeding to any level and which marginally improves agreement between  $\beta^-$  feeding deduced from intensity balance and from the TAGS data of 1997Gr09; however, the major discrepancies in  $\beta^$ strength distribution persist. It appears to be necessary to introduce a number of additional levels between 2900 and 3600 keV; transitions between these levels and ones below 2200 keV may conceivably eliminate much of the feeding to E(level)<2200 implied by the present decay scheme. However, the observation of  $\beta\gamma$  coin at the 433, 1143 and 1385 levels (1978St02) appears to establish that significant  $\beta^-$  feeding to those levels does indeed occur.

#### <sup>93</sup>Sr Levels

| E(level) <sup>†</sup>                            | $J^{\pi \ddagger}$                                            | T <sub>1/2</sub>         | Comments                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------|---------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>213.431 <i>11</i>                           | 5/2 <sup>+</sup><br>(9/2) <sup>+</sup>                        | 7.423 min 24<br>4.3 ns 1 | $T_{1/2}$ : from Adopted Levels.<br>$T_{1/2}$ : from 2004Sa69. others: 4.6 ns 3 from 1986Ka20 ( $\beta\gamma$ delayed coin), 4.6 ns<br>5 (1983Ka41), 4.6 ns 3 (1970MaZC) and 5 ns 1 (1982Ka03).<br>g-factor=-0.227 13 (2004Sa69) from TDPAC assuming hyperfine field for Sr In<br>Fe At low temperature is -23.83 7 tesla. |
| 432.604 24<br>986.12 5<br>1142.55 4<br>1148.20 6 | $(5/2,7/2,9/2)^+ (9/2^+) (5/2^+,7/2,9/2^+) (5/2^+,7/2,9/2^+)$ | <0.3 ns                  | T <sub>1/2</sub> : from 1972Mc04.                                                                                                                                                                                                                                                                                          |

 $^{93}_{38}$ Sr<sub>55</sub>-1

| E(level) <sup>†</sup>   | $J^{\pi \ddagger}$    | E(level) <sup>†</sup>        | $J^{\pi \ddagger}$    | E(level) <sup>†</sup> | $J^{\pi \ddagger}$         |
|-------------------------|-----------------------|------------------------------|-----------------------|-----------------------|----------------------------|
| 1238.24 7               | $(7/2^+)$             | 2869.07 11                   |                       | 4461.12 15            | 3/2,5/2,7/2                |
| 1385.31 6               |                       | 2886.45 <mark>&amp;</mark> 9 |                       | 4509.26 12            | $3/2^{(-)}, 5/2, 7/2$      |
| 1529.32 10              |                       | 2979.92 10                   | 3/2,5/2,7/2           | 4577.6 <i>3</i>       | 3/2,5/2,7/2                |
| 1562.95 9               | $(5/2^+, 7/2, 9/2^+)$ | 3198.14 15                   |                       | 4620.20 16            | 3/2-,5/2-,7/2-             |
| 1779.78 8               | $(11/2^{-})$          | 3233.01 14                   | $(7/2^{-}, 9/2^{+})$  | 4714.64 13            | 3/2,5/2,7/2                |
| 1808.48 7               | $(5/2^+, 7/2, 9/2^+)$ | 3256.40 12                   | $(5/2^+, 7/2, 9/2^+)$ | 4790.38 25            | 3/2,5/2,7/2                |
| 1869.64 7               |                       | 3404.39 21                   | $(5/2^+, 7/2)$        | 4913.09 13            | $(7/2)^{-}$                |
| 1910.86 9               |                       | 3603.18 11                   | $(5/2^+, 7/2)$        | 4991.28 14            | $(7/2)^{-}$                |
| 2045.58 9               |                       | 3623.70 16                   |                       | 5012.24 14            | 3/2,5/2,7/2                |
| 2054.02 9               |                       | 3789.19 14                   | 3/2,5/2,7/2           | $\approx 5200^{a}$    |                            |
| 2117.45 11              |                       | 3803.73 9                    | 3/2-,5/2-,7/2-        | 5384.61 <i>13</i>     | 3/2-,5/2-,7/2-             |
| 2141.07 11              | $(5/2^+, 7/2, 9/2^+)$ | 3847.62 8                    | $(7/2)^{-}$           | 5395.5 4              | $(5/2^{-},7/2^{-})$        |
| 2273.00 12              |                       | 3866.86 12                   | $(5/2^+, 7/2)$        | 5413.6 <i>3</i>       | $3/2^{(-)}$ to $7/2^{(-)}$ |
| 2292.87 7               | $(5/2^+, 7/2, 9/2^+)$ | 3867.40 8                    | $(7/2)^{-}$           | 5601.3? 9             |                            |
| 2319.10 8               | $(5/2^+, 7/2, 9/2^+)$ | 3876.73 10                   | $(5/2^+, 7/2)$        | 5631.2 9              |                            |
| 2351.51 11              | $(5/2^+, 7/2, 9/2^+)$ | 3890.64 10                   | 3/2-,5/2-,7/2-        | 5775.5? 4             |                            |
| 2456.44 19              |                       | 3934.66 12                   | $(5/2^+, 7/2)$        | 6000.51? <i>16</i>    |                            |
| 2459.78 <sup>#</sup> 13 |                       | 3954.94 8                    | 3/2,5/2,7/2           | 6096.7? <i>3</i>      |                            |
| 2553.80 10              |                       | 4017.60 15                   | 3/2,5/2,7/2           | 6260.72? 21           |                            |
| 2621.39 14              | $(5/2^+, 7/2, 9/2^+)$ | 4037.88 10                   | 3/2,5/2,7/2           | 6272.70? 21           |                            |
| 2737.44 17              |                       | 4041.9 <i>3</i>              |                       | 6277.40? 22           |                            |
| 2770.69 13              | (≥7/2)                | 4097.43 12                   | $(7/2^{-})$           | 6707.42? 22           |                            |
| 2773.99 <sup>@</sup> 25 |                       | ≈4250 <sup><i>a</i></sup>    |                       |                       |                            |
| 2782.20 11              | $(5/2^+, 7/2, 9/2^+)$ | 4336.12 24                   | 3/2,5/2,7/2           |                       |                            |

03----

#### <sup>93</sup>Sr Levels (continued)

<sup>†</sup> From least-squares fit to  $E\gamma$ , omitting lines with uncertain placement, except when all lines deexciting level are uncertain.

<sup>‡</sup> From Adopted Levels.

<sup>#</sup> Intensity balance implies %I $\beta$ =-0.23 5 to this level if the decay scheme of 1977Bi01 is assumed.

<sup>@</sup> Intensity balance implies %I $\beta$ =-0.38 8 to this level if the decay scheme of 1977Bi01 is assumed.

& Intensity balance implies %I $\beta$ =-0.20 11 to this level if the decay scheme of 1977Bi01 is assumed.

<sup>*a*</sup> Not a discrete level and, consequently, not included in Adopted Levels. E is the centroid of an energy bin of typically $\approx$ 100 keV width which encompasses a level or levels fed in  $\beta^-$  decay with the summed I $\beta$  indicated; from total absorption  $\gamma$  spectroscopy (1997Gr09). Neither specific level energies nor deexcitation  $\gamma$  energies are presently known.

#### $\beta^-$ radiations

 $\langle E_{\beta} \rangle = 2630 \ 30 \ (1990 \text{Ru05}), 2590 \ 140 \ (1982 \text{Al01}) \text{ cf. } 2229 \ 160 \text{ calculated by the evaluator for the decay scheme presented here using the code RADLST.}$ 

I $\beta$ , log *ft* From I( $\gamma$ +ce) imbalance, except as noted. Independent I $\beta$  values (uncertainty unstated) are available, as a function of excitation energy, from the total absorption  $\gamma$  spectrometry data of 1997Gr09 and, after being scaled to achieve consistency with adopted I $\beta$ (g.s.) (4% reduction required), these are given in comments. Where the latter values significantly exceed those based on intensity balance, they possibly indicate the existence of an additional level (or levels) at comparable energy(ies); relatively low values may indicate incorrect placement of gammas from the relevant level and/or failure of the level scheme to account for gammas directly feeding the level (presumably the former for E(level)>5390, and the latter for low-lying levels).

## <sup>93</sup>Rb $\beta^-$ decay 1977Bi01 (continued)

#### $\beta^-$ radiations (continued)

| E(decay)                     | E(level) | Ιβ <sup>-&amp;</sup> | Log ft              | Comments                                                                                                                                                                                                                                     |
|------------------------------|----------|----------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (758 <sup><i>a</i></sup> 9)  | 6707.42? | 0.038†               | 5.0 <sup>†</sup>    | av E $\beta$ =256.2 36<br>I $\beta$ <sup>-</sup> : 0.040% to level(s) at or near this energy; from TAGS data (1997Gr09).<br>I $\beta$ =0.51% 5 from intensity balance.                                                                       |
| (1188 <sup><i>a</i></sup> 9) | 6277.40? | 0.019 <sup>†</sup>   | 6.0 <sup>†</sup>    | av E $\beta$ =435.5 <i>39</i><br>I $\beta$ <sup>-</sup> : 0.020% to level(s) at or near this energy; from TAGS data (1997Gr09).<br>I $\beta$ =0.38% 5 from intensity balance. 4005 $\gamma$ also placed from this level in 1977Bi01.         |
| (1192 <sup><i>a</i></sup> 9) | 6272.70? | 0.019 <sup>†</sup>   | $6.0^{\dagger}$     | av E $\beta$ =437.6 39<br>I $\beta^-$ : 0.020% to level(s) at or near this energy; from TAGS data (1997Gr09).<br>I $\beta$ =0.63% 5 from intensity balance. 1360 $\gamma$ also placed from this level in<br>1977Bi01.                        |
| (1204 <sup><i>a</i></sup> 9) | 6260.72? | 0.019†               | 6.0 <sup>†</sup>    | av E $\beta$ =442.7 39<br>I $\beta$ <sup>-</sup> : 0.020% to level(s) at or near this energy; from TAGS data (1997Gr09).<br>I $\beta$ =0.62% 6 from intensity balance.                                                                       |
| (1368 <sup><i>a</i></sup> 9) | 6096.7?  | 0.022†               | 6.2 <sup>†</sup>    | av E $\beta$ =514.4 40<br>I $\beta$ <sup>-</sup> : 0.023% to level(s) at or near this energy; from TAGS data (1997Gr09).<br>I $\beta$ =0.33% 4 from intensity balance.                                                                       |
| (1464 <sup><i>a</i></sup> 9) | 6000.51? | 0.027†               | 6.2 <sup>†</sup>    | av E $\beta$ =557.0 40<br>I $\beta$ <sup>-</sup> : 0.028% to level(s) at or near this energy; from TAGS data (1997Gr09).<br>I $\beta$ =1.19% 9 from intensity balance. 1983 $\gamma$ also placed from this level in 1977Bi01.                |
| (1690 <sup><i>a</i></sup> 9) | 5775.5?  | 0.033†               | 6.4 <sup>†</sup>    | av E $\beta$ =658.0 41<br>I $\beta^-$ : 0.034% to level(s) at or near this energy; from TAGS data (1997Gr09).<br>I $\beta$ =0.34% 6 from intensity balance.                                                                                  |
| (1834 9)                     | 5631.2   | 0.075 <sup>†</sup>   | 6.2 <sup>†</sup>    | av E $\beta$ =723.7 42<br>I $\beta^-$ : 0.078% to level(s) at or near this energy; from TAGS data (1997Gr09).<br>I $\beta$ =0.57% 6 from intensity balance. 1534 $\gamma$ , 3585 $\gamma$ also placed from this level in 1977Bi01.           |
| (1864 <sup><i>a</i></sup> 9) | 5601.3?  | 0.037 <sup>†</sup>   | 6.5 <sup>†</sup>    | av E $\beta$ =737.3 42<br>I $\beta$ <sup>-</sup> : 0.039% to level(s) at or near this energy; from TAGS data (1997Gr09).<br>I $\beta$ =0.16% 7 from intensity balance. 981 $\gamma$ , 1754 $\gamma$ also placed from this level in 1977Bi01. |
| (2051 9)                     | 5413.6   | 0.19†                | 5.9 <sup>†</sup>    | av E $\beta$ =823.6 42<br>I $\beta$ <sup>-</sup> : 0.19% from TAGS data (1997Gr09). other: 0.46 20 from intensity balance if 4271 $\gamma$ deexcites this level.                                                                             |
| (2070 9)                     | 5395.5   | 0.31 <sup>†</sup> 5  | 5.75 <sup>†</sup> 7 | av $E\beta = 832.0 \ 42$<br>$I\beta^{-1} = 0.17\%$ from TAGS data (1997Gr09)                                                                                                                                                                 |
| (2080 9)                     | 5384.61  | 1.03 <sup>†</sup> 8  | 5.24 <sup>†</sup> 4 | av E $\beta$ =837.0 42<br>$B^{-1}$ : 0.35% from TAGS data (1997Gr09)                                                                                                                                                                         |
| (2265 9)                     | ≈5200    | 0.74 <sup>@</sup>    | ≥5.5                | Log $ft$ : =5.55 if only one level is fed.                                                                                                                                                                                                   |
| (2453 9)                     | 5012.24  | 0.50 /               | 5.85 /              | av $E\beta = 1010.4 \ 43$<br>I $\beta^-$ : 0.76% from TAGS data (1997Gr09).                                                                                                                                                                  |
| (24/4 9)                     | 4991.28  | 0.01 /               | 5.78 5              | av $E\beta = 1020.2 \ 43$<br>I $\beta^-$ : 0.79% from TAGS data (1997Gr09).                                                                                                                                                                  |
| (2552.9)                     | 4913.09  | 1.22.9               | 5.54 4              | av $E\beta = 1056.9 \ 4.3$<br>I $\beta^-$ : 1.45% from TAGS data (1997Gr09).                                                                                                                                                                 |
| (2675 9)                     | 4790.38  | 0.41 8               | 6.10 9              | av $E\beta$ =1114.6 43<br>I $\beta$ <sup>-</sup> : 0.35% from TAGS data (1997Gr09).                                                                                                                                                          |
| (2750 9)                     | 4714.64  | 0.83 9               | 5.84 5              | av $E\beta$ =1150.3 43<br>I $\beta$ <sup>-</sup> : 1.12% from TAGS data (1997Gr09).                                                                                                                                                          |
| (2845 9)                     | 4620.20  | 1.25 22              | 5.73 8              | av E $\beta$ =1194.9 43<br>I $\beta^-$ : 1.40% from TAGS data (1997Gr09).                                                                                                                                                                    |
| (2887 9)                     | 4577.6   | 0.58 8               | 6.09 6              | av E $\beta$ =1215.1 43<br>I $\beta$ <sup>-</sup> : 0.70% from TAGS data (1997Gr09).                                                                                                                                                         |

Continued on next page (footnotes at end of table)

## <sup>93</sup>Rb $\beta^-$ decay 1977Bi01 (continued)

#### $\beta^-$ radiations (continued)

| E(decay)                     | E(level)               | Ιβ <sup>-&amp;</sup> | Log ft                | Comments                                                                            |
|------------------------------|------------------------|----------------------|-----------------------|-------------------------------------------------------------------------------------|
| (2956 9)                     | 4509.26                | 0.46 10              | 6.23 10               | av E $\beta$ =1247.4 43                                                             |
|                              |                        |                      |                       | $I\beta^{-}$ : 0.42% from TAGS data (1997Gr09).                                     |
| (3004 9)                     | 4461.12                | 0.82 7               | 6.01 4                | av $E\beta = 1270.2 \ 43$                                                           |
| $(2120^{a})$                 | 1226 12                | 0.28.5               | 6 12 6                | $I\beta$ : 1.03% from IAGS data (199/Gr09).                                         |
| (3129 9)                     | 4550.12                | 0.58 5               | 0.42 0                | $IB^{-1} = 1529.043$<br>$IB^{-1} = 155\%$ from TAGS data (1997Gr09)                 |
| (3215, 9)                    | ~4250                  | 1.48@                | >5.9                  | Log $ft = 5.9$ if only one level is fed                                             |
| (3213 9)<br>(3368 9)         | $\sim 4230$<br>4097 43 | 2.09.14              | $\frac{25.9}{5.82.3}$ | 205  J $15.5  H$ only one reverts red.<br>av $FR=1443.2.43$                         |
| (5500 ))                     | 1097.15                | 2.09 17              | 5.02 5                | $I\beta^{-1}: 2.96\%$ from TAGS data (1997Gr09).                                    |
| (3423 9)                     | 4041.9                 | 0.23 4               | 6.81 8                | av E $\beta$ =1469.7 43                                                             |
|                              |                        |                      |                       | $I\beta^{-}$ : 0.27% from TAGS data (1997Gr09).                                     |
| (3427 9)                     | 4037.88                | 2.15 14              | 5.84 <i>3</i>         | av $E\beta = 1471.6 \ 43$                                                           |
| (2447.0)                     | 4017 (0                | 0.05.0               | 6.05.5                | $1\beta^{-1}$ : 2.18% from TAGS data (1997Gr09).                                    |
| (34479)                      | 4017.60                | 0.85 9               | 6.25 5                | av $E\beta = 1481.5 4.5$<br>$R^{-1} = 0.75\%$ from TACS data (1007Cr00)             |
| (3510.9)                     | 3954 94                | 2 24 15              | 5 87 3                | P = 0.75% from TAOS data (19970109).<br>av $FR=1511.2.43$                           |
| (5510 ))                     | 5751.71                | 2.2115               | 5.07 5                | $I\beta^{-1}: 2.60\%$ from TAGS data (1997Gr09).                                    |
| (3530 9)                     | 3934.66                | 2.19 17              | 5.89 4                | av E $\beta$ =1520.9 43                                                             |
|                              |                        |                      |                       | $I\beta^{-}$ : 2.60% from TAGS data (1997Gr09).                                     |
| (3574 9)                     | 3890.64                | 5.6 5                | 5.50 4                | av E $\beta$ =1541.9 43                                                             |
|                              |                        |                      |                       | E(decay): weighted average of 3640 170 and 3280 220 from $\beta$ spectra gated by   |
|                              |                        |                      |                       | $432\gamma$ and $3458\gamma$ , respectively (19/8St02) is 3510 1/0.                 |
| (3588, 0)                    | 3876 73                | 1 82 15              | 6.00.4                | FR = 1548.5 43                                                                      |
| (5500 ))                     | 5676.75                | 1.02 15              | 0.00 4                | $I\beta^{-1}: 2.11\%$ from TAGS data (1997Gr09).                                    |
| (3598 9)                     | 3867.40                | 5.2 4                | 5.55 4                | av E $\beta$ =1553.0 43                                                             |
|                              |                        |                      |                       | E(decay): Measured endpoint energy for $\gamma$ -gated $\beta^-$ spectrum: 3560 300 |
|                              |                        |                      |                       | (1978St02).                                                                         |
| (2509, 0)                    | 2966.96                | 1 (2 15              | 6.05.4                | $I\beta^{-1}$ : 5.79% from TAGS data (199/Gr09).                                    |
| (3398.9)                     | 3800.80                | 1.02 13              | 0.03 4                | V = 1333.5 43<br>$IR^{-1} = 1.80\%$ from TAGS data (1007Gr00)                       |
| (3617.9)                     | 3847.62                | 3.73 24              | 5.70 3                | av $E\beta = 1562.4 43$                                                             |
|                              |                        |                      |                       | $I\beta^{-}$ : 4.20% from TAGS data (1997Gr09).                                     |
| (3661 9)                     | 3803.73                | 3.72 24              | 5.73 <i>3</i>         | av E $\beta$ =1583.4 43                                                             |
|                              |                        |                      | < <b>-</b>            | $I\beta^{-}$ : 4.01% from TAGS data (1997Gr09).                                     |
| (36/6 9)                     | 3789.19                | 0.59 10              | 6.53 8                | av $E\beta = 1590.4.43$                                                             |
| (38/1 0)                     | 3623 70                | 0.41.5               | 6786                  | $B = 1660.6 \ A$                                                                    |
| (3041 ))                     | 5625.70                | 0.71 5               | 0.70 0                | $I\beta^{-1}: 0.92\%$ from TAGS data (1997Gr09).                                    |
| (3862 9)                     | 3603.18                | 0.67 9               | 6.57 6                | av E $\beta$ =1679.4 44                                                             |
|                              |                        |                      |                       | $I\beta^{-1}$ : 3.73% from TAGS data (1997Gr09).                                    |
| (4061 9)                     | 3404.39                | 0.56 9               | 6.75 7                | av Εβ=1774.7 44                                                                     |
| (1200.0)                     | 2256 40                | 0.01.7               | 7.04.15               | $I\beta^{-}$ : 2.69% from TAGS data (1997Gr09).                                     |
| (4209-9)                     | 3256.40                | 0.21 /               | 1.24 15               | av $E\beta = 1845.844$<br>$R^{-1} = 1.21\%$ from TACS data (1007C+00)               |
| $(4232 \ 9)$                 | 3233.01                | 0 17 4               | 7 34 11               | B = 1.21% from FAOS data (19970109).<br>av $FB = 1857.0.44$                         |
| (1232 ))                     | 5255.01                | 0.17 7               | 7.5111                | $IB^{-1037,0777}$ IGS data (1997Gr09).                                              |
| (4267 <sup><i>a</i></sup> 9) | 3198.14                | ≤0.04                | ≥8.0                  | av E $\beta$ =1873.8 44                                                             |
|                              |                        |                      |                       | $I\beta^{-}$ : 0.81% from TAGS data (1997Gr09).                                     |
| (4485 9)                     | 2979.92                | 1.05 8               | 6.66 4                | av $E\beta = 1978.644$                                                              |
| (4506.0)                     | 2060 07                | 0.50.7               | 7.02.6                | $I\beta$ : 1.89% from TAGS data (1997/Gr09).                                        |
| (4,390,9)                    | 2009.07                | 0.30 /               | 1.03 0                | av $Ep=2031.9.44$<br>I $B^-$ , no branch reported by 1997Gr09                       |
| (4683 9)                     | 2782.20                | 0.26 22              | 7.4 4                 | av E $\beta$ =2073.7 44                                                             |
|                              |                        |                      |                       | $I\beta^{-1}$ : 0.54% from TAGS data (1997Gr09).                                    |
| (4728 <sup><i>a</i></sup> 9) | 2737.44                | ≤0.04                | ≥8.2                  | av Eβ=2095.3 44                                                                     |

Continued on next page (footnotes at end of table)

 $^{93}_{38}\mathrm{Sr}_{55}$ -5

## $^{93}$ Rb $\beta^-$ decay 1977Bi01 (continued)

#### $\beta^-$ radiations (continued)

| E(decay)                     | E(level) | Iβ <sup>-&amp;</sup> | Log ft          | Comments                                                                                          |  |  |
|------------------------------|----------|----------------------|-----------------|---------------------------------------------------------------------------------------------------|--|--|
|                              |          |                      |                 | $I\beta^-$ : 0.19% from TAGS data (1997Gr09); -0.07 11 from I( $\gamma$ +ce) balance.             |  |  |
| (4844 9)                     | 2621.39  | 0.44 8               | 7.19 8          | av $E\beta = 2151.244$                                                                            |  |  |
| · · · · ·                    |          |                      |                 | $I\beta^{-1}$ : 0.51% from TAGS data (1997Gr09).                                                  |  |  |
| (5113 9)                     | 2351.51  | 0.18 7               | 7.68 17         | av E $\beta$ =2281.2 44                                                                           |  |  |
|                              |          |                      |                 | $I\beta^{-1}$ : 0.22% from TAGS data (1997Gr09).                                                  |  |  |
| (5146 9)                     | 2319.10  | 0.37 15              | 7.38 18         | av E $\beta$ =2296.8 44                                                                           |  |  |
|                              |          |                      |                 | $I\beta^{-}$ : 0.15 % from TAGS data (1997Gr09).                                                  |  |  |
| (5172 9)                     | 2292.87  | 0.56 9               | 7.21 7          | av E $\beta$ =2309.4 44                                                                           |  |  |
|                              |          |                      |                 | $I\beta^{-}$ : 0.47% from TAGS data (1997Gr09).                                                   |  |  |
| (5324 9)                     | 2141.07  | 0.44 10              | 7.37 10         | av E $\beta$ =2382.6 44                                                                           |  |  |
|                              |          |                      |                 | $I\beta^{-}$ : 0.26% from TAGS data (1997Gr09).                                                   |  |  |
| (5348 9)                     | 2117.45  | 0.16 7               | 7.82 19         | av E $\beta$ =2394.0 44                                                                           |  |  |
|                              |          |                      |                 | $I\beta^{-}$ : 0.08% from TAGS data (1997Gr09).                                                   |  |  |
| (5411 9)                     | 2054.02  | ≤0.74                | ≥7.2            | av E $\beta$ =2424.6 44                                                                           |  |  |
|                              |          |                      |                 | $I\beta^{-}$ : 0.17% from TAGS data (1997Gr09).                                                   |  |  |
| (5419 9)                     | 2045.58  | ≤0.76                | ≥7.2            | av $E\beta = 2428.6 \ 44$                                                                         |  |  |
|                              |          |                      |                 | I $\beta^-$ : 0.27% from TAGS data (1997Gr09); 0.61% 15 from I( $\gamma$ +ce) balance.            |  |  |
| (5554 9)                     | 1910.86  | ≤0.8                 | ≥7.2            | av $E\beta = 2493.644$                                                                            |  |  |
|                              | 10/0 / 1 |                      |                 | $I\beta^{-}$ : 0.27% from TAGS data (1997Gr09); 0.73% 11 from I( $\gamma$ +ce) balance.           |  |  |
| (5595 <sup>4</sup> 9)        | 1869.64  | ≤0.31                | ≥7.6            | av $E\beta = 2513.544$                                                                            |  |  |
| (5(57.0)                     | 1000 40  | -1.5                 | > 7.0           | $1\beta$ : 0.07% from TAGS data (1997Gr09); 0.13% 18 from 1( $\gamma$ +ce) balance.               |  |  |
| (56579)                      | 1808.48  | ≤1.5                 | ≥/.0            | av $E\beta = 2545.044$                                                                            |  |  |
| (5(95.0)                     | 1770 70  | -0.(2                | . 7.2           | $1\beta$ : 0.38% from IAGS data (199/Gr09); 1.34% 20 from $1(\gamma + ce)$ balance.               |  |  |
| (5685 9)                     | 1//9./8  | $\leq 0.63$          | ≥7.3            | av $E\beta = 2550.844$                                                                            |  |  |
| (5002.0)                     | 1562.05  | <1.0                 | >70             | $13 : 0.17\%$ from TAGS data (1997Gr09); 0.55% 10 from $1(\gamma + ce)$ balance.                  |  |  |
| (3902 9)                     | 1302.93  | $\leq 1.0$           | 21.2            | av $Ep=2001.444$<br>$Ie^{-1} = 0.22\%$ from TACS data (1007Gr00): 0.85% 11 from $Ie(100)$ holomoo |  |  |
| (5036, 0)                    | 1520.32  | <0.5                 | >75             | $E_{P} = -2677.6 \ AA$                                                                            |  |  |
| (3930 9)                     | 1329.32  | $\leq 0.5$           | 21.5            | $I\beta = 0.12\%$ from TAGS data (1997Gr09): 0.46% 4 from $I(\nu \pm ce)$ balance                 |  |  |
| (6080.9)                     | 1385 31  | <32                  | >6.8            | FR = 2747 + 1.44                                                                                  |  |  |
| (0000 ))                     | 1505.51  | <i>&lt;3.2</i>       | 20.0            | E(decay): Measured endpoint energy for $\gamma$ -gated $\beta^-$ spectrum: 6120 250               |  |  |
|                              |          |                      |                 | (1978St02)                                                                                        |  |  |
|                              |          |                      |                 | $I\beta^{-1}$ : 0.61% from TAGS data (1997Gr09): 2.8% 4 from $I(\gamma + ce)$ balance.            |  |  |
| (6227.9)                     | 1238.24  | 0.52 13              | 7.61 11         | av $E\beta = 2818.144$                                                                            |  |  |
| (                            |          |                      |                 | $I\beta^{-1}$ : 0.40% from TAGS data (1997Gr09).                                                  |  |  |
| (6317 <sup>a</sup> 9)        | 1148.20  | <1.2                 | >7.3            | av $E\beta = 2861.544$                                                                            |  |  |
| ()                           |          | _                    |                 | $I\beta^-$ : $\approx 0\%$ from TAGS data (1997Gr09); 1.08% 17 from I( $\gamma$ +ce) balance.     |  |  |
| (6322 <sup><i>a</i></sup> 9) | 1142.55  | ≤1.8                 | ≥7.1            | av $E\beta = 2864.344$                                                                            |  |  |
|                              |          |                      |                 | E(decay): Measured endpoint energy for $\gamma$ -gated $\beta^-$ spectrum: 6190 250               |  |  |
|                              |          |                      |                 | (1978St02).                                                                                       |  |  |
|                              |          |                      |                 | I $\beta^-$ : $\approx 0\%$ from TAGS data (1997Gr09); 1.2% 6 from I( $\gamma$ +ce) balance.      |  |  |
| (6479 <sup>a</sup> 9)        | 986.12   | 0.6 5                | 7.6 4           | av Eβ=2939.8 44                                                                                   |  |  |
|                              |          |                      |                 | I $\beta^-$ : $\approx 0\%$ from TAGS data (1997Gr09).                                            |  |  |
| (7032 9)                     | 432.604  | ≤6.3                 | ≥6.8            | av E $\beta$ =3206.8 44                                                                           |  |  |
|                              |          |                      |                 | E(decay): Measured endpoint energy for $\gamma$ -gated $\beta^-$ spectrum: 6950 220               |  |  |
|                              |          |                      |                 | (1978St02).                                                                                       |  |  |
|                              |          |                      |                 | $I\beta^-$ : ≈0% from TAGS data (1997Gr09); 5.1% 12 (log <i>ft</i> =6.86 <i>11</i> ) from I(γ+ce) |  |  |
|                              |          |                      |                 | balance.                                                                                          |  |  |
| (7252 <sup><i>a</i></sup> 9) | 213.431  | ≤1.5                 | $\geq 9.6^{1u}$ | av E $\beta$ =3307.0 44                                                                           |  |  |
|                              |          |                      |                 | I $\beta$ <sup>−</sup> : 0.9 6 from intensity balance;≈0% from TAGS data (1997Gr09).              |  |  |
| 7470 <sup>‡</sup> 8          | 0        | 35 <b>#</b> 3        | 6.14 4          | av Eβ=3415.5 44                                                                                   |  |  |

<sup>†</sup> Level may also deexcite via n emission, in which case I $\beta$  would be higher (by 1.39% 7 at most) and log *ft* correspondingly

Continued on next page (footnotes at end of table)

#### $^{93}$ Rb $\beta^-$ decay 1977Bi01 (continued)

 $\beta^-$  radiations (continued)

lower.

- <sup>‡</sup> β end-point energy; weighted average of 7450 40 (2001Ko07), 7456 15 (1992Pr03), 7488 15 (from Blonnigen, quoted by 1992Pr03), 7455 35 (1988GrZX), 7486 15 (1980De02, table 1), 7560 120 (1978Wo15), 7410 100 (1978St02), 7440 30 (1978Wu04), 7440 30 (1983Ia02), 7550 150 (1970MaZC).
- <sup>#</sup> From  $4\pi\gamma$ - $\beta$  data, 1996Gr20 obtain 32.6% 24. 1975Br03 report 42% 4, based on I(432 $\gamma$ , <sup>93</sup>Sr)/I(590 $\gamma$ , <sup>93</sup>Y) in source at saturation and %I(590 $\gamma$ ) (values unstated), without allowance for % $\beta$ -n=1.39 7 or for their decay scheme in which I $\gamma$ (432)/( $\Sigma$  I( $\gamma$ +ce) to g.s.) is≈103% of that in 1977Bi01 (corrected I $\beta$ (g.s.)=39% 4). 1974Ac04 report 59% 3, based on saturation values for  $\Sigma$ (I $\gamma$  to <sup>93</sup>Sr g.s.)/  $\Sigma$ (I $\gamma$  to <sup>93</sup>Y g.s.) and authors' decay schemes, assuming I $\beta$ (g.s., <sup>93</sup>Y)=0 and % $\beta$ -n(<sup>93</sup>Rb)=1.7. Compared with the adopted decay schemes, the ratio from 1974Ac04 is a factor of 1.34 low; consequently,  $\Sigma$ (I $\beta$  to excited states of <sup>93</sup>Sr)=39% 3 implied in 1974Ac04 is an underestimate (probably 52% 4, leading to I $\beta$ (g.s.)=46% 4, consistent with datum from 1975Br03, but not 1996Gr20). The evaluator adopts the weighted average of data from 1996Gr20 and 1975Br03 (after the revisions above), assuming adopted % $\beta$ -n=1.39 7.
- <sup>@</sup> From TAGS (1997Gr09); may represent feeding to one level or to several levels of undetermined energy, lying within a typically≈100 keV wide energy bin centered at the level energy indicated.
- <sup>&</sup> Absolute intensity per 100 decays.

<sup>*a*</sup> Existence of this branch is questionable.

 $\gamma(^{93}\mathrm{Sr})$ 

I $\gamma$  normalization: 0.0202 *10* from  $\Sigma(I(\gamma+ce)$  to g.s.)=65% 3, based on I $\beta$ (g.s.)=34% 3 and  $\%\beta^-n(^{93}Rb)=1.39$  7. Note, however, that I $\gamma$  normalization=0.0136 *11* is implied by I(432 $\gamma$ )/I<sub>n</sub> from <sup>94</sup>Rb $\beta^-n$  decay and adopted  $\%\beta^-n$ .

1977Bi01 observe more than three times as many  $\gamma$  rays as 1975Br03 or 1974Ac04 and resolve five multiplets reported as single lines in prior studies. The evaluator, therefore, omits  $\gamma$  rays reported by 1974Ac04 alone (E $\gamma$ =1380.1, 1597.1, 2456.1, 2946.85, 2999.0, 4879.0, 5135.7, 5269.9).

 $\alpha$ (K)exp data are from 1974Ac04.

 $\neg$ 

 $<E_{y}>=1920\ 100\ (1990Ru05)$  cf. 2257 25 calculated using the code RADLST for the decay scheme presented here.

| $E_{\gamma}^{\dagger}$                    | $I_{\gamma}^{\dagger a}$         | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                                       | $\mathbf{E}_{f}$   | $\mathrm{J}_f^\pi$                             | Mult. <sup>‡</sup> | $\alpha^{\boldsymbol{b}}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------|----------------------------------|------------------------|----------------------------------------------------------|--------------------|------------------------------------------------|--------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 163.4 <i>3</i><br>205.2 <i>6</i>          | 6.6 <i>15</i><br>6 <i>3</i>      | 2456.44<br>4714.64     | 3/2,5/2,7/2                                              | 2292.87<br>4509.26 | $(5/2^+, 7/2, 9/2^+)$<br>$3/2^{(-)}, 5/2, 7/2$ |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 213.429 <sup>#</sup> 11                   | 384 <sup>#</sup> 21              | 213.431                | (9/2)+                                                   | 0                  | 5/2+                                           | E2                 | 0.0639                    | $\begin{array}{l} \alpha(\mathrm{K}) \exp = 0.056 \ 6 \\ \alpha(\mathrm{K}) = 0.0556 \ 8; \ \alpha(\mathrm{L}) = 0.00701 \ 10; \ \alpha(\mathrm{M}) = 0.001177 \\ 17; \ \alpha(\mathrm{N}+) = 0.0001498 \ 21 \\ \alpha(\mathrm{N}) = 0.0001422 \ 20; \ \alpha(\mathrm{O}) = 7.67 \times 10^{-6} \ 11 \\ \mathrm{E}_{\gamma}: \ \text{weighted average of } 213.433 \ 12 \ (1979Bo26), \\ 213.39 \ 5 \ (1977Bi01), \ 213.39 \ 5 \ (1974Ac04). \\ \delta(\mathrm{M}1,\mathrm{E2}) > 2.4 \ \mathrm{from \ adopted} \ \alpha(\mathrm{K}) \mathrm{exp.} \\ \alpha(\mathrm{K}) \mathrm{exp: \ from \ 1986Ka20. \ Others: \ 0.038 \ 8 \\ (1974Ac04), \ 0.04 \ 1 \ (1972Mc04). \end{array}$ |
| 219.16 <sup>#</sup> 6                     | 158 <sup>#</sup> 9               | 432.604                | (5/2,7/2,9/2)+                                           | 213.431            | (9/2)+                                         | M1,E2 <sup>@</sup> | 0.039 19                  | $\alpha(K)=0.034 \ 17; \ \alpha(L)=0.0042 \ 22; \ \alpha(M)=0.0007 \ 4; \ \alpha(N+)=9.E-5 \ 5 \ \alpha(N)=9.E-5 \ 5; \ \alpha(O)=4.8\times10^{-6} \ 22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 351.74 11                                 | 3.8 4                            | 3954.94                | 3/2,5/2,7/2                                              | 3603.18            | $(5/2^+, 7/2)$                                 |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 404.99 <mark>&amp;</mark> 18              | 3.1 5                            | 3603.18                | $(5/2^+, 7/2)$                                           | 3198.14            |                                                | _                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 432.61 <sup>#</sup> 3                     | 1000 <sup>#</sup> 50             | 432.604                | (5/2,7/2,9/2)+                                           | 0                  | 5/2+                                           | M1,E2 <sup>@</sup> | 0.0047 11                 | $\alpha(K)=0.0042 \ 9; \ \alpha(L)=0.00047 \ 12; \ \alpha(M)=7.9\times10^{-5}$<br>$19; \ \alpha(N+)=1.04\times10^{-5} \ 24$<br>$\alpha(N)=9.8\times10^{-6} \ 23; \ \alpha(O)=6.1\times10^{-7} \ 12$<br>E <sub>y</sub> : weighted average of 432.633 \ 23 (1979Bo26),<br>432.51 5 (1977Bi01), 432.62 5 (1974Ac04).<br>I <sub>Y</sub> =20.2% 12 based on recommended decay scheme<br>normalization (cf. 13.2% 8 from I(432 $\gamma$ )/I <sub>n</sub> in <sup>94</sup> Rb<br>$\beta^-$ n decay).                                                                                                                                                                                       |
| 473.8 6                                   | 1.6 7                            | 4097.43                | $(7/2^{-})$                                              | 3623.70            |                                                |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 595.87 <i>13</i><br>602 6 4               | 12.7 <i>17</i><br>10 1 <i>18</i> | 2869.07<br>4620.20     | 3/2- 5/2- 7/2-                                           | 2273.00<br>4017.60 | 312 512 712                                    |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 610.1 4                                   | 10.1 18                          | 3866.86                | $(5/2^+, 7/2)$                                           | 3256.40            | $(5/2^+, 7/2, 9/2^+)$                          |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 661.64 <i>11</i>                          | 16 <i>3</i>                      | 4509.26                | 3/2 <sup>(-)</sup> ,5/2,7/2                              | 3847.62            | (7/2)-                                         |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 709.95 <sup>#</sup> 5<br>721.99 <i>17</i> | 308# 22<br>2.9 4                 | 1142.55<br>3954.94     | (5/2 <sup>+</sup> ,7/2,9/2 <sup>+</sup> )<br>3/2,5/2,7/2 | 432.604<br>3233.01 | $(5/2,7/2,9/2)^+$<br>$(7/2^-,9/2^+)$           |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| $\frac{93}{10} \text{Rb } \beta^{-} \text{ decay} \qquad 1977 \text{Bi01 (continued)}$ |                          |                        |                                                        |         |                                                          |                                                       |  |  |  |
|----------------------------------------------------------------------------------------|--------------------------|------------------------|--------------------------------------------------------|---------|----------------------------------------------------------|-------------------------------------------------------|--|--|--|
| $\gamma$ <sup>(93</sup> Sr) (continued)                                                |                          |                        |                                                        |         |                                                          |                                                       |  |  |  |
| $E_{\gamma}^{\dagger}$                                                                 | $I_{\gamma}^{\dagger a}$ | E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$                                     | $E_f$   | $\mathrm{J}_f^\pi$                                       | Comments                                              |  |  |  |
| 768.36 23                                                                              | 6.6 11                   | 1910.86                |                                                        | 1142.55 | $(5/2^+, 7/2, 9/2^+)$                                    |                                                       |  |  |  |
| 776.4 4                                                                                | 3.0 10                   | 3233.01                | $(7/2^{-}, 9/2^{+})$                                   | 2456.44 |                                                          |                                                       |  |  |  |
| 793.65 <sup>#</sup> 6                                                                  | 62 <b>#</b> 3            | 1779.78                | $(11/2^{-})$                                           | 986.12  | $(9/2^+)$                                                |                                                       |  |  |  |
| 822.41 22                                                                              | 9.7 17                   | 1808.48                | $(5/2^+, 7/2, 9/2^+)$                                  | 986.12  | $(9/2^+)$                                                |                                                       |  |  |  |
| 831.2 3                                                                                | 3.6 8                    | 4620.20                | 3/2-,5/2-,7/2-                                         | 3789.19 | 3/2,5/2,7/2                                              |                                                       |  |  |  |
| 859.05 <sup>°</sup> 18                                                                 | 4.8 6                    | 6272.70?               |                                                        | 5413.6  | $3/2^{(-)}$ to $7/2^{(-)}$                               |                                                       |  |  |  |
| 867.74 16                                                                              | 4.2 5                    | 3847.62                | $(7/2)^{-}$                                            | 2979.92 | 3/2,5/2,7/2                                              |                                                       |  |  |  |
| 901.08 18                                                                              | 6.3 8                    | 2770.69                | $(\geq 1/2)$                                           | 1869.64 | (5/2+7/2)(2+)                                            |                                                       |  |  |  |
| 905.0 5                                                                                | 3.8 0<br>8 2 0           | 2054.02                | מוד רוז רוז                                            | 1148.20 | $(3/2^{+}, 1/2, 9/2^{+})$<br>$3/2^{-}, 5/2^{-}, 7/2^{-}$ |                                                       |  |  |  |
| 910.91 14                                                                              | 0.29                     | 4/14.04                | 5/2, 5/2, 7/2                                          | 212 421 | $(0/2)^+$                                                |                                                       |  |  |  |
| 929.04" 9                                                                              | 24.4" 17                 | 1142.55                | $(3/2^{+}, 1/2, 9/2^{+})$<br>$(5/2^{+}, 7/2, 9/2^{+})$ | 213.431 | $(9/2)^{+}$                                              |                                                       |  |  |  |
| 934.70 10                                                                              | 7517                     | 3867.40                | $(3/2, 7/2, 9/2)^{-}$                                  | 213.431 | (9/2)                                                    | Placed by evaluator: deexcites 5601 level in 1977Bi01 |  |  |  |
| 986.05 <sup>#</sup> .6                                                                 | 301# 20                  | 086.12                 | (1/2)<br>$(0/2^+)$                                     | 0       | 5/2+                                                     |                                                       |  |  |  |
| 990.9.3                                                                                | 6513                     | 2770.69                | (3/2)<br>(>7/2)                                        | 1779 78 | $(11/2^{-})$                                             |                                                       |  |  |  |
| 1035.1 5                                                                               | 3.8 12                   | 2273.00                | (= 1/2)                                                | 1238.24 | $(7/2^+)$                                                |                                                       |  |  |  |
| 1054.7 3                                                                               | 3.4 7                    | 2292.87                | $(5/2^+, 7/2, 9/2^+)$                                  | 1238.24 | $(7/2^+)$                                                |                                                       |  |  |  |
| 1059.4 <i>3</i>                                                                        | 3.7 7                    | 2045.58                |                                                        | 986.12  | $(9/2^+)$                                                |                                                       |  |  |  |
| 1068.51 <sup>#</sup> 11                                                                | 35 <sup>#</sup> 3        | 3954.94                | 3/2,5/2,7/2                                            | 2886.45 |                                                          |                                                       |  |  |  |
| 1077.60 17                                                                             | 2.6 3                    | 5012.24                | 3/2,5/2,7/2                                            | 3934.66 | $(5/2^+, 7/2)$                                           |                                                       |  |  |  |
| 1096.71 9                                                                              | 23.0 14                  | 1529.32                |                                                        | 432.604 | (5/2,7/2,9/2)+                                           |                                                       |  |  |  |
| 1100.63 12                                                                             | 10.4 9                   | 4991.28                | $(7/2)^{-}$                                            | 3890.64 | 3/2-,5/2-,7/2-                                           |                                                       |  |  |  |
| 1115.77 22                                                                             | 5.4 8                    | 3233.01                | $(1/2^{-}, 9/2^{+})$                                   | 2117.45 | (>7/2)                                                   |                                                       |  |  |  |
| 1120.0 4                                                                               | 4.2 12                   | 3890.04                | 3/2 ,3/2 ,1/2                                          | 2770.09 | $(\geq 1/2)$<br>(5/2+ 7/2 0/2+)                          |                                                       |  |  |  |
| 1138.0.3                                                                               | 11.6 12                  | 4336.12                | 3/2 5/2 7/2                                            | 3198 14 | (3/2 ,//2,9/2 )                                          |                                                       |  |  |  |
| $1142.58^{\#}$ 12                                                                      | 18.1 <sup>#</sup> 15     | 1142.55                | $(5/2^+, 7/2, 9/2^+)$                                  | 0       | 5/2+                                                     |                                                       |  |  |  |
| 1148.18 <sup>#</sup> 8                                                                 | 88 <sup>#</sup> 5        | 1148.20                | $(5/2^+, 7/2, 9/2^+)$                                  | 0       | 5/2+                                                     |                                                       |  |  |  |
| 1150.38 <i>13</i>                                                                      | 26.7 24                  | 2292.87                | $(5/2^+, 7/2, 9/2^+)$                                  | 1142.55 | $(5/2^+, 7/2, 9/2^+)$                                    |                                                       |  |  |  |
| 1164.36 25                                                                             | 5.2 8                    | 3623.70                |                                                        | 2459.78 |                                                          |                                                       |  |  |  |
| 1167.1 5                                                                               | 2.6 7                    | 3623.70                |                                                        | 2456.44 |                                                          |                                                       |  |  |  |
| 1202.4 7                                                                               | 2.7 12                   | 4991.28                | $(7/2)^{-}$                                            | 3789.19 | 3/2, 5/2, 7/2                                            |                                                       |  |  |  |
| 1204.9 /                                                                               | 2.9 12                   | 4461.12                | 3/2,5/2,1/2                                            | 3236.40 | $(5/2^{+}, 1/2, 9/2^{+})$<br>$2/2^{-}, 5/2^{-}, 7/2^{-}$ |                                                       |  |  |  |
| 1208.33 19                                                                             | <u> </u>                 | 5012.24                | 3/2,3/2,7/2                                            | 3789 19 | 3/2 , 5/2 , 1/2                                          |                                                       |  |  |  |
| 1238 30 <sup>#</sup> 8                                                                 | 85# 5                    | 1238 24                | $(7/2^+)$                                              | 0       | 5/2+                                                     |                                                       |  |  |  |
| 1284 0 4                                                                               | 8620                     | 3603 18                | $(7/2^{+})$<br>$(5/2^{+})$                             | 2319 10 | $(5/2^+ 7/2 9/2^+)$                                      |                                                       |  |  |  |
| 1287.0 5                                                                               | 6.4 20                   | 2273.00                | (3/2 ,//2)                                             | 986.12  | $(9/2^+)$                                                |                                                       |  |  |  |
| 1306.92 19                                                                             | 6.6 8                    | 2292.87                | $(5/2^+, 7/2, 9/2^+)$                                  | 986.12  | $(9/2^+)$                                                |                                                       |  |  |  |
| 1315.64 10                                                                             | 21.7 15                  | 2553.80                |                                                        | 1238.24 | $(7/2^+)$                                                |                                                       |  |  |  |
| 1332.97 8                                                                              | 61 6                     | 2319.10                | $(5/2^+, 7/2, 9/2^+)$                                  | 986.12  | $(9/2^+)$                                                |                                                       |  |  |  |
| 1349.67 21                                                                             | 8.1 10                   | 1562.95                | $(5/2^+, 7/2, 9/2^+)$                                  | 213.431 | $(9/2)^+$                                                |                                                       |  |  |  |

From ENSDF

 $^{93}_{38}{
m Sr}_{55}{
m -8}$ 

L

## $\gamma(^{93}\text{Sr})$ (continued)

| $E_{\gamma}^{\dagger}$  | $I_{\gamma}^{\dagger a}$        | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                  | $E_f$              | $\mathrm{J}_f^\pi$                             | Comments                                                                  |
|-------------------------|---------------------------------|------------------------|-------------------------------------|--------------------|------------------------------------------------|---------------------------------------------------------------------------|
| 1359.92 16              | 11.8 11                         | 4097.43                | (7/2 <sup>-</sup> )                 | 2737.44            |                                                | Placed by evaluator; deexcites 6272 level in 1977Bi01.                    |
| 1365.36 11              | 18.7 14                         | 2351.51                | $(5/2^+, 7/2, 9/2^+)$               | 986.12             | $(9/2^+)$                                      |                                                                           |
| 1385.21 <sup>#</sup> 8  | 328 <sup>#</sup> 16             | 1385.31                |                                     | 0                  | 5/2+                                           |                                                                           |
| 1388.7 6                | 13 <i>3</i>                     | 2773.99                |                                     | 1385.31            |                                                |                                                                           |
| 1397.7 5                | 3.3 9                           | 2782.20                | $(5/2^+, 7/2, 9/2^+)$               | 1385.31            |                                                |                                                                           |
| 1405.37 22              | 5.7 7                           | 2553.80                |                                     | 1148.20            | $(5/2^+, 7/2, 9/2^+)$                          |                                                                           |
| 1437.10 <i>16</i>       | 24.0 21                         | 1869.64                |                                     | 432.604            | $(5/2,7/2,9/2)^+$                              |                                                                           |
| 1439.6 <sup>#c</sup> 5  | 5.2 <sup>#</sup> 17             | 5775.5?                |                                     | 4336.12            | 3/2,5/2,7/2                                    |                                                                           |
| 1452.7 7                | 2.9 11                          | 3233.01                | $(7/2^{-}, 9/2^{+})$                | 1779.78            | $(11/2^{-})$                                   |                                                                           |
| 1470.13 22              | 10.9 12                         | 3789.19                | 3/2,5/2,7/2                         | 2319.10            | $(5/2^+, 7/2, 9/2^+)$                          |                                                                           |
| 1473.2 6                | 3.1 10                          | 2459.78                |                                     | 986.12             | $(9/2^+)$                                      |                                                                           |
| 1479.1 3                | 3.5 7                           | 2621.39                | $(5/2^+, 7/2, 9/2^+)$               | 1142.55            | $(5/2^+, 7/2, 9/2^+)$                          |                                                                           |
| 1483.96 24              | 5.0 7                           | 4037.88                | 3/2,5/2,7/2                         | 2553.80            |                                                |                                                                           |
| 1491.25° 24             | 7.0 10                          | 6000.51?               |                                     | 4509.26            | $3/2^{(-)}, 5/2, 7/2$                          |                                                                           |
| 1494.85 15              | 13.2 11                         | 3954.94                | 3/2,5/2,7/2                         | 2459.78            |                                                |                                                                           |
| 1501.18 12              | 20.0 13                         | 2886.45                |                                     | 1385.31            | (5/0+ 5/0)                                     |                                                                           |
| 1507.77 14              | 13.6 11                         | 5384.61                | 3/2 ,5/2 ,7/2                       | 38/6.73            | $(5/2^+, 7/2)$                                 |                                                                           |
| 1515.8 3                | 5.4 10                          | 3867.40                | (1/2)                               | 2351.51            | $(5/2^+, 1/2, 9/2^+)$                          |                                                                           |
| 1531.1 /                | 3./ 11                          | 3803.73                | 3/2, 5/2, 1/2<br>2/2 5/2 7/2        | 2273.00            | (5/2 + 7/2) 0/2 + )                            | Placed by avaluatory descrites 5621 level in 1077Pi01                     |
| 1333.8 3                | 0.1 <i>12</i><br>16 2 <i>13</i> | 4/90.38                | 5/2, 5/2, 7/2                       | 5230.40<br>2210.10 | $(3/2^+, 1/2, 9/2^+)$<br>$(5/2^+, 7/2, 0/2^+)$ | Placed by evaluator, deexcites 5051 level in 1977 bio1.                   |
| 1562 01 11              | 10.5 15                         | 1562.05                | (5/2, 7/2)<br>$(5/2^+, 7/2, 0/2^+)$ | 2319.10            | (3/2, 7/2, 9/2)                                |                                                                           |
| 1566.2.0                | 3416                            | 1302.93                | (3/2, 7/2, 9/2)<br>$(11/2^{-})$     | 213 /31            | $(9/2)^+$                                      |                                                                           |
| 1574 71 22              | 718                             | 3867.40                | $(11/2)^{-}$                        | 213.431            | (5/2)<br>$(5/2^+ 7/2 9/2^+)$                   |                                                                           |
| 1578.0.3                | 8812                            | 3623 70                | (1/2)                               | 2045 58            | (3/2 ,7/2,7/2 )                                |                                                                           |
| $1594.61^{\#}$ 12       | $33.3^{\#} 21$                  | 2979.92                | 3/2.5/2.7/2                         | 1385.31            |                                                |                                                                           |
| 1612 87 <sup>#</sup> 11 | 96 <sup>#</sup> 6               | 2045 58                | 0/2,0/2,//2                         | 432 604            | $(5/2 7/2 9/2)^+$                              |                                                                           |
| 1635 20 15              | 21 5 18                         | 2621 39                | $(5/2^+ 7/2 9/2^+)$                 | 986.12             | $(9/2^+)$                                      |                                                                           |
| 1662.16.15              | 21.0 17                         | 3954.94                | 3/2.5/2.7/2                         | 2292.87            | $(5/2^+, 7/2, 9/2^+)$                          |                                                                           |
| 1684 76 <sup>#</sup> 13 | $31.6^{\#}.24$                  | 2117.45                | 0/2,0/2,//2                         | 432 604            | $(5/2, 7/2, 9/2)^+$                            |                                                                           |
| 1690.9.7                | 3512                            | 4041.9                 |                                     | 2351 51            | $(5/2^+, 7/2, 9/2^+)$                          |                                                                           |
| 1726 3 4                | 459                             | 2869.07                |                                     | 1142.55            | $(5/2^+,7/2,9/2^+)$                            |                                                                           |
| 1736.3 13               | 6.3                             | 3876.73                | $(5/2^+, 7/2)$                      | 2141.07            | $(5/2^+, 7/2, 9/2^+)$                          |                                                                           |
| 1738.4 9                | 64                              | 2886.45                | (0/2 ,//2)                          | 1148.20            | $(5/2^+, 7/2, 9/2^+)$                          |                                                                           |
| 1743.2 5                | 6.4 18                          | 3789.19                | 3/2.5/2.7/2                         | 2045.58            | (0,2,,,,2,,,,2))                               |                                                                           |
| 1745.7 5                | 6.9 18                          | 4097.43                | $(7/2^{-})$                         | 2351.51            | $(5/2^+, 7/2, 9/2^+)$                          |                                                                           |
| 1749.61 19              | 14.5 13                         | 3867.40                | $(7/2)^{-}$                         | 2117.45            | (-1),1)-1)                                     |                                                                           |
| 1753.6 4                | 5.4 11                          | 3623.70                | · · /                               | 1869.64            |                                                | Placed by evaluator; deexcites 5601 level in 1977Bi01.                    |
| 1793.62 18              | 15.4 <i>14</i>                  | 3934.66                | $(5/2^+, 7/2)$                      | 2141.07            | $(5/2^+, 7/2, 9/2^+)$                          |                                                                           |
| 1803.6 <i>3</i>         | 13.7 20                         | 4577.6                 | 3/2,5/2,7/2                         | 2773.99            |                                                |                                                                           |
| 1808.50 10              | 161 8                           | 1808.48                | $(5/2^+, 7/2, 9/2^+)$               | 0                  | 5/2+                                           | $\%$ I $\gamma$ =3.25 22 based on recommended decay scheme normalization. |
| 1812.76 <i>21</i>       | 14.3 16                         | 3198.14                |                                     | 1385.31            |                                                |                                                                           |

## $\gamma(^{93}\text{Sr})$ (continued)

| $E_{\gamma}^{\dagger}$  | $I_{\gamma}^{\dagger a}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$                                 | $E_f$   | ${ m J}_f^\pi$        | Comments                                                |
|-------------------------|--------------------------|---------------|------------------------------------------------------|---------|-----------------------|---------------------------------------------------------|
| 1821.86 21              | 33.0 22                  | 3867.40       | $(7/2)^{-}$                                          | 2045.58 |                       |                                                         |
| 1831.10 22              | 11.9 14                  | 3876.73       | $(5/2^+, 7/2)$                                       | 2045.58 |                       |                                                         |
| 1836.4 6                | 16 10                    | 3890.64       | 3/2-,5/2-,7/2-                                       | 2054.02 |                       |                                                         |
| 1838.0 4                | 27 10                    | 4620.20       | 3/2-,5/2-,7/2-                                       | 2782.20 | $(5/2^+, 7/2, 9/2^+)$ |                                                         |
| 1841.6 7                | 4.7 14                   | 3404.39       | $(5/2^+, 7/2)$                                       | 1562.95 | $(5/2^+, 7/2, 9/2^+)$ |                                                         |
| 1869.69 <sup>#</sup> 11 | 109 <sup>#</sup> 6       | 1869.64       |                                                      | 0       | 5/2+                  |                                                         |
| 1882.9 4                | 5.9 12                   | 4620.20       | 3/2-,5/2-,7/2-                                       | 2737.44 |                       |                                                         |
| 1886.6 <i>3</i>         | 8.3 13                   | 2319.10       | $(5/2^+, 7/2, 9/2^+)$                                | 432.604 | $(5/2,7/2,9/2)^+$     |                                                         |
| 1892.70 24              | 10.0 12                  | 3803.73       | 3/2-,5/2-,7/2-                                       | 1910.86 |                       |                                                         |
| 1900.94 12              | 26.5 17                  | 3954.94       | 3/2,5/2,7/2                                          | 2054.02 |                       |                                                         |
| 1908.1 6                | 5.6 18                   | 5775.5?       |                                                      | 3867.40 | $(7/2)^{-}$           |                                                         |
| 1910.72 <sup>#</sup> 12 | 65 <b>#</b> 4            | 1910.86       |                                                      | 0       | 5/2+                  |                                                         |
| 1919.0 4                | 6.2 12                   | 2351.51       | $(5/2^+, 7/2, 9/2^+)$                                | 432.604 | $(5/2,7/2,9/2)^+$     |                                                         |
| 1927.64 12              | 43 3                     | 2141.07       | $(5/2^+, 7/2, 9/2^+)$                                | 213.431 | $(9/2)^+$             |                                                         |
| 1933.9 3                | 14.8 23                  | 3803.73       | 3/2 <sup>-</sup> ,5/2 <sup>-</sup> ,7/2 <sup>-</sup> | 1869.64 |                       |                                                         |
| 1956.4 3                | 10.0 13                  | 3867.40       | $(7/2)^{-}$                                          | 1910.86 |                       |                                                         |
| 1978.28 15              | 46 3                     | 3847.62       | (1/2)                                                | 1869.64 |                       | Placed has evolved and described (001 level in 1077Pi01 |
| 1985.2 9                | 4.0 18                   | 4037.88       | 3/2,3/2,1/2                                          | 2054.02 |                       | Placed by evaluator, deexcites 5001 level in 1977Bi01.  |
| 1991.8 5                | 9.0 13                   | 4057.88       | 5/2, 5/2, 1/2                                        | 2043.38 |                       | Placed by evaluator, deexcites 5596 level in 1977Biol.  |
| 2023 9 4                | 5.4 11<br>7 0 15         | 2456 44       | (1/2)                                                | 432 604 | $(5/2 7/2 9/2)^+$     |                                                         |
| 2025.9 4                | 13 3 17                  | 2459 78       |                                                      | 432.004 | $(5/2,7/2,9/2)^+$     |                                                         |
| x2037.0.8               | 3918                     | 2139.70       |                                                      | 152.001 | (3/2,7/2,7/2)         |                                                         |
| 2043.82 17              | 17.5 14                  | 4913.09       | $(7/2)^{-}$                                          | 2869.07 |                       |                                                         |
| 2054.06 <sup>#</sup> 12 | 77# 4                    | 2054 02       |                                                      | 0       | 5/2+                  |                                                         |
| 2058.78 17              | 20.1 17                  | 3867.40       | $(7/2)^{-}$                                          | 1808.48 | $(5/2^+, 7/2, 9/2^+)$ |                                                         |
| 2068.36 24              | 8.2.9                    | 3876.73       | $(5/2^+, 7/2)$                                       | 1808.48 | $(5/2^+, 7/2, 9/2^+)$ |                                                         |
| 2087.4 3                | 10.0 14                  | 3867.40       | $(7/2)^{-}$                                          | 1779.78 | $(11/2^{-})$          |                                                         |
| 2147.6 3                | 16.6 22                  | 4017.60       | 3/2,5/2,7/2                                          | 1869.64 |                       |                                                         |
| 2168.24 14              | 25.2 18                  | 4037.88       | 3/2,5/2,7/2                                          | 1869.64 |                       |                                                         |
| 2170.4 16               | 33                       | 4790.38       | 3/2,5/2,7/2                                          | 2621.39 | $(5/2^+, 7/2, 9/2^+)$ |                                                         |
| 2206.2 <sup>c</sup> 3   | 10.4 15                  | 6096.7?       |                                                      | 3890.64 | 3/2-,5/2-,7/2-        |                                                         |
| 2229.44 <sup>#</sup> 12 | 54 <sup>#</sup> 3        | 4037.88       | 3/2,5/2,7/2                                          | 1808.48 | $(5/2^+, 7/2, 9/2^+)$ |                                                         |
| 2256.2 9                | 43                       | 3404.39       | $(5/2^+, 7/2)$                                       | 1148.20 | $(5/2^+, 7/2, 9/2^+)$ |                                                         |
| 2258.4 4                | 15 <i>3</i>              | 4577.6        | 3/2,5/2,7/2                                          | 2319.10 | $(5/2^+, 7/2, 9/2^+)$ |                                                         |
| 2262.0 <i>3</i>         | 8.1 11                   | 4041.9        |                                                      | 1779.78 | $(11/2^{-})$          |                                                         |
| 2270.20 12              | 31.3 18                  | 3256.40       | $(5/2^+, 7/2, 9/2^+)$                                | 986.12  | $(9/2^+)$             |                                                         |
| 2292.80 13              | 30.7 19                  | 2292.87       | $(5/2^+, 7/2, 9/2^+)$                                | 0       | 5/2+                  |                                                         |
| 2327.5 3                | 6.6 10                   | 3890.64       | 3/2-,5/2-,7/2-                                       | 1562.95 | $(5/2^+, 7/2, 9/2^+)$ |                                                         |
| 2334.0 5                | 3.78                     | 4790.38       | 5/2, 5/2, 1/2                                        | 2456.44 | $(5/2,7/2,0/2)^+$     |                                                         |
| 2349.38 1/              | 55 5<br>10 7 12          | 2/82.20       | $(3/2^+, 1/2, 9/2^+)$                                | 432.004 | (5/2, //2,9/2)        |                                                         |
| 2339.43 10              | 18./13                   | 4913.09       | (1/2)                                                | 2333.80 |                       |                                                         |

10

# ${}^{93}_{38}{ m Sr}_{55}{ m -}10$

From ENSDF

 $^{93}_{38}\mathrm{Sr}_{55}$ -10

## $\gamma(^{93}\text{Sr})$ (continued)

| $E_{\gamma}^{\dagger}$  | $I_{\gamma}^{\dagger a}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$  | $E_f$   | ${ m J}_f^\pi$                                       |
|-------------------------|--------------------------|------------------------|-----------------------|---------|------------------------------------------------------|
| 2377.0 <sup>°</sup> 3   | 7.8 12                   | 6000.51?               |                       | 3623.70 |                                                      |
| 2386.72 <sup>c</sup> 23 | 12.9 14                  | 6277.40?               |                       | 3890.64 | 3/2-,5/2-,7/2-                                       |
| 2398.3 <sup>c</sup> 3   | 7.0 10                   | 5631.2                 |                       | 3233.01 | $(7/2^{-}, 9/2^{+})$                                 |
| 2403.5 6                | 3.7 9                    | 3789.19                | 3/2,5/2,7/2           | 1385.31 |                                                      |
| 2418.22 22              | 19.1 <i>19</i>           | 3404.39                | $(5/2^+, 7/2)$        | 986.12  | $(9/2^+)$                                            |
| <sup>x</sup> 2451.7 8   | 9.3 22                   |                        |                       |         |                                                      |
| 2454.97 22              | 28 <i>3</i>              | 3603.18                | $(5/2^+, 7/2)$        | 1148.20 | $(5/2^+, 7/2, 9/2^+)$                                |
| 2461.98 19              | 27.6 24                  | 3847.62                | $(7/2)^{-}$           | 1385.31 |                                                      |
| 2491.20 <sup>#</sup> 22 | 22.6 <sup>#</sup> 23     | 3876.73                | $(5/2^+, 7/2)$        | 1385.31 |                                                      |
| 2505.20 15              | 47 <i>3</i>              | 3890.64                | 3/2-,5/2-,7/2-        | 1385.31 |                                                      |
| 2523.7 5                | 14 5                     | 2737.44                |                       | 213.431 | $(9/2)^+$                                            |
| 2550.06 22              | 15.4 15                  | 4461.12                | 3/2,5/2,7/2           | 1910.86 |                                                      |
| 2557.5 4                | 7.1 12                   | 2770.69                | (≥7/2)                | 213.431 | $(9/2)^+$                                            |
| 2568.59 20              | 21.9 19                  | 2782.20                | $(5/2^+, 7/2, 9/2^+)$ | 213.431 | $(9/2)^+$                                            |
| 2602.38 22              | 20.1 19                  | 5384.61                | 3/2-,5/2-,7/2-        | 2782.20 | $(5/2^+, 7/2, 9/2^+)$                                |
| 2614.1 3                | 7.4 11                   | 5384.61                | 3/2-,5/2-,7/2-        | 2770.69 | (≥7/2)                                               |
| 2620.2 6                | 4.8 11                   | 4913.09                | $(7/2)^{-}$           | 2292.87 | $(5/2^+, 7/2, 9/2^+)$                                |
| 2624.8 5                | 5.3 11                   | 5395.5                 | $(5/2^{-},7/2^{-})$   | 2770.69 | (≥7/2)                                               |
| 2638.1 4                | 16.1 <i>21</i>           | 3876.73                | $(5/2^+, 7/2)$        | 1238.24 | $(7/2^+)$                                            |
| 2646.6 6                | 10 <i>3</i>              | 3789.19                | 3/2,5/2,7/2           | 1142.55 | $(5/2^+, 7/2, 9/2^+)$                                |
| 2652.62 22              | 17.9 <i>18</i>           | 4461.12                | 3/2,5/2,7/2           | 1808.48 | $(5/2^+, 7/2, 9/2^+)$                                |
| 2661.08 22              | 17.8 <i>17</i>           | 3803.73                | 3/2-,5/2-,7/2-        | 1142.55 | $(5/2^+, 7/2, 9/2^+)$                                |
| 2674.2 <sup>°</sup> 4   | 6.1 12                   | 6277.40?               |                       | 3603.18 | $(5/2^+, 7/2)$                                       |
| 2704.97 <sup>#</sup> 17 | 59 <sup>#</sup> 4        | 3847.62                | $(7/2)^{-}$           | 1142.55 | $(5/2^+, 7/2, 9/2^+)$                                |
| 2724.60 25              | 32 5                     | 3866.86                | $(5/2^+, 7/2)$        | 1142.55 | $(5/2^+, 7/2, 9/2^+)$                                |
| 2734.0 10               | 3.4 13                   | 3876.73                | $(5/2^+, 7/2)$        | 1142.55 | $(5/2^+, 7/2, 9/2^+)$                                |
| 2766.48 17              | 22.9 17                  | 2979.92                | 3/2,5/2,7/2           | 213.431 | $(9/2)^+$                                            |
| 2773.2 4                | 7.0 12                   | 4336.12                | 3/2,5/2,7/2           | 1562.95 | $(5/2^+, 7/2, 9/2^+)$                                |
| 2799.9 4                | 8.7 15                   | 4037.88                | 3/2,5/2,7/2           | 1238.24 | $(7/2^+)$                                            |
| 2812.6 5                | 6.2 14                   | 3954.94                | 3/2,5/2,7/2           | 1142.55 | $(5/2^+, 7/2, 9/2^+)$                                |
| 2861.34 15              | 64 4                     | 3847.62                | $(7/2)^{-}$           | 986.12  | $(9/2^+)$                                            |
| 2869.23 18              | 25.2 19                  | 2869.07                |                       | 0       | 5/2+                                                 |
| 2875.3 6                | 6.0 14                   | 4017.60                | 3/2,5/2,7/2           | 1142.55 | $(5/2^+, 7/2, 9/2^+)$                                |
| 2880.48 22              | 21.9 18                  | 3866.86                | $(5/2^+, 7/2)$        | 986.12  | $(9/2^+)$                                            |
| 2886.3 <i>3</i>         | 19.0 20                  | 2886.45                |                       | 0       | 5/2+                                                 |
| 2890.4 3                | 23.5 21                  | 3876.73                | $(5/2^+, 7/2)$        | 986.12  | $(9/2^{+})$                                          |
| 2903.6° 3               | 12.9 15                  | 6707.42?               |                       | 3803.73 | 3/2 <sup>-</sup> ,5/2 <sup>-</sup> ,7/2 <sup>-</sup> |
| 2954.93 24              | 26 3                     | 4097.43                | $(7/2^{-})$           | 1142.55 | $(5/2^+, 7/2, 9/2^+)$                                |
| 2958.1 6                | 9.3 24                   | 5012.24                | 3/2,5/2,7/2           | 2054.02 |                                                      |
| 3027.6 <sup>°</sup> 11  | 2.8 12                   | 6260.72?               |                       | 3233.01 | $(7/2^{-}, 9/2^{+})$                                 |
| 3104.1 8                | 4.1 14                   | 4913.09                | $(7/2)^{-}$           | 1808.48 | $(5/2^+, 7/2, 9/2^+)$                                |
| 3113.85° 24             | 24.4 20                  | 6000.51?               |                       | 2886.45 |                                                      |

11

| $\frac{^{93}\text{Rb}\beta^-\text{decay}}{1977\text{Bi01}(\text{continued})}$           |                                                                                     |                                                      |                                                                                                                                                                                     |                                                     |                                                                                                                                                    |                                                        |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|--|
| $\gamma$ <sup>(93</sup> Sr) (continued)                                                 |                                                                                     |                                                      |                                                                                                                                                                                     |                                                     |                                                                                                                                                    |                                                        |  |  |  |  |  |
| ${\rm E_{\gamma}}^{\dagger}$                                                            | $I_{\gamma}^{\dagger a}$                                                            | E <sub>i</sub> (level)                               | $\mathrm{J}^{\pi}_{i}$                                                                                                                                                              | $E_f$                                               | $\mathrm{J}_f^\pi$                                                                                                                                 | Comments                                               |  |  |  |  |  |
| x3129.2 8<br>3133.1 8<br>3172.1 <sup>c</sup> 4                                          | 5.0 <i>15</i><br>5.1 <i>15</i><br>11.1 <i>15</i>                                    | 4913.09<br>5631.2                                    | (7/2) <sup>-</sup>                                                                                                                                                                  | 1779.78<br>2459.78                                  | (11/2 <sup>-</sup> )                                                                                                                               |                                                        |  |  |  |  |  |
| 3211.6 <sup>#</sup> 6<br>3226.4 <sup>c</sup> 3                                          | 6.4 <sup>#</sup> 13<br>17.418                                                       | 4991.28<br>6000.51?                                  | (7/2)-                                                                                                                                                                              | 1779.78<br>2773.99                                  | (11/2 <sup>-</sup> )                                                                                                                               |                                                        |  |  |  |  |  |
| 3296.1 <i>10</i><br>3338.0 <sup><i>c</i></sup> 4                                        | 4.0 <i>17</i><br>7.8 <i>13</i>                                                      | 5413.6<br>5631.2                                     | $3/2^{(-)}$ to $7/2^{(-)}$                                                                                                                                                          | 2117.45<br>2292.87                                  | $(5/2^+, 7/2, 9/2^+)$                                                                                                                              |                                                        |  |  |  |  |  |
| 3370.97 <sup>#</sup> 16<br>3389.8 9<br>3403.56 <sup>c</sup> 18                          | 65 <sup>#</sup> 4<br>3.5 11<br>26.3 17                                              | 4309.26<br>3803.73<br>3603.18<br>6272.70?            | 3/2 <sup>-</sup> ,5/2 <sup>-</sup> ,7/2 <sup>-</sup><br>(5/2 <sup>+</sup> ,7/2)                                                                                                     | 432.604<br>213.431<br>2869.07                       | $(5/2, 7/2, 9/2)^+$<br>$(5/2, 7/2, 9/2)^+$<br>$(9/2)^+$                                                                                            |                                                        |  |  |  |  |  |
| 3458.19 <sup>#</sup> 16                                                                 | 214 <sup>#</sup> 11                                                                 | 3890.64                                              | 3/2-,5/2-,7/2-                                                                                                                                                                      | 432.604                                             | (5/2,7/2,9/2)+                                                                                                                                     |                                                        |  |  |  |  |  |
| 3477.39 <sup>#</sup> 24<br>3486.9 <sup>c</sup> 7                                        | 15.5 <sup>#</sup> 13<br>3.9 10                                                      | 4620.20<br>6260.72?                                  | 3/2 <sup>-</sup> ,5/2 <sup>-</sup> ,7/2 <sup>-</sup>                                                                                                                                | 1142.55<br>2773.99                                  | (5/2+,7/2,9/2+)                                                                                                                                    |                                                        |  |  |  |  |  |
| 3502.6 <sup>#</sup> 4<br>3544.0 8<br>3547.2 <sup>°</sup> 9                              | 31 <sup>#</sup> 5<br>9 3<br>8 3                                                     | 3934.66<br>5413.6<br>5601.3?                         | $(5/2^+, 7/2)$<br>$3/2^{(-)}$ to $7/2^{(-)}$                                                                                                                                        | 432.604<br>1869.64<br>2054.02                       | (5/2,7/2,9/2)+                                                                                                                                     |                                                        |  |  |  |  |  |
| 3572.05 25<br>3585.4 5<br>3642.4 6<br>3664.75 19<br>3706.6 <sup>c</sup> 7               | 17.1 <i>15</i><br>6.1 <i>11</i><br>5.6 <i>12</i><br>31.5 <i>21</i><br>4.2 <i>10</i> | 4714.64<br>4017.60<br>4790.38<br>4097.43<br>6260.72? | 3/2,5/2,7/2<br>3/2,5/2,7/2<br>3/2,5/2,7/2<br>(7/2 <sup>-</sup> )                                                                                                                    | 1142.55<br>432.604<br>1148.20<br>432.604<br>2553.80 | $(5/2^+,7/2,9/2^+)$<br>$(5/2,7/2,9/2)^+$<br>$(5/2^+,7/2,9/2^+)$<br>$(5/2,7/2,9/2)^+$                                                               | Placed by evaluator; deexcites 5631 level in 1977Bi01. |  |  |  |  |  |
| 3721.6 <i>4</i><br>3770.4 <i>3</i><br>3789.3 <i>3</i>                                   | 8.7 <i>14</i><br>10.2 <i>12</i><br>8.7 <i>11</i>                                    | 3934.66<br>4913.09<br>3789.19                        | (5/2 <sup>+</sup> ,7/2)<br>(7/2) <sup>-</sup><br>3/2,5/2,7/2                                                                                                                        | 213.431<br>1142.55<br>0                             | (9/2) <sup>+</sup><br>(5/2 <sup>+</sup> ,7/2,9/2 <sup>+</sup> )<br>5/2 <sup>+</sup>                                                                |                                                        |  |  |  |  |  |
| 3803.98 <sup>#</sup> 19<br>3821.9 4<br>3848.7 7<br>3867.60 17<br>3876.7 3               | 90 <sup>#</sup> 5<br>5.6 8<br>6.1 14<br>148 8<br>12.1 13                            | 3803.73<br>5384.61<br>4991.28<br>3867.40<br>3876.73  | 3/2 <sup>-</sup> ,5/2 <sup>-</sup> ,7/2 <sup>-</sup><br>3/2 <sup>-</sup> ,5/2 <sup>-</sup> ,7/2 <sup>-</sup><br>(7/2) <sup>-</sup><br>(7/2) <sup>-</sup><br>(5/2 <sup>+</sup> ,7/2) | $0\\1562.95\\1142.55\\0\\0\\0$                      | 5/2 <sup>+</sup><br>(5/2 <sup>+</sup> ,7/2,9/2 <sup>+</sup> )<br>(5/2 <sup>+</sup> ,7/2,9/2 <sup>+</sup> )<br>5/2 <sup>+</sup><br>5/2 <sup>+</sup> |                                                        |  |  |  |  |  |
| 3883.95 <sup>#</sup> 22<br>3890.5 <i>3</i>                                              | 25.9 <sup>#</sup> 19<br>12.0 13                                                     | 4097.43<br>3890.64                                   | $(7/2^{-})$<br>$3/2^{-}, 5/2^{-}, 7/2^{-}$                                                                                                                                          | 213.431<br>0                                        | $(9/2)^+$<br>$5/2^+$                                                                                                                               |                                                        |  |  |  |  |  |
| 3934.34 <sup>#</sup> 18<br>3941.7 <sup>c</sup> 4<br>3954.2 12                           | 56 <sup>#</sup> 3<br>6.5 13<br>2.2 9                                                | 3934.66<br>6260.72?<br>3954.94<br>4001.28            | $(5/2^+,7/2)$<br>3/2,5/2,7/2<br>$(7/2)^-$                                                                                                                                           | 0<br>2319.10<br>0                                   | $5/2^+$<br>( $5/2^+, 7/2, 9/2^+$ )<br>$5/2^+$<br>( $0/2^+$ )                                                                                       | Pleased by avaluatory descrites 6277 level in 1077Pi01 |  |  |  |  |  |
| 4004.5 8<br>4009.9 <i>12</i><br>4017.55 <i>21</i><br>4156.6 <i>6</i><br>4242.1 <i>5</i> | 4.5 11<br>3.0 11<br>23.6 17<br>5.5 11<br>4.4 7                                      | 4991.28<br>5395.5<br>4017.60<br>5395.5<br>5384.61    | (7/2)<br>$(5/2^-,7/2^-)$<br>3/2,5/2,7/2<br>$(5/2^-,7/2^-)$<br>$3/2^-,5/2^-,7/2^-$                                                                                                   | 980.12<br>1385.31<br>0<br>1238.24<br>1142.55        | $(9/2^+)$<br>$5/2^+$<br>$(7/2^+)$<br>$(5/2^+,7/2,9/2^+)$                                                                                           | Placed by evaluator; deexcites 62// level in 19//Bi01. |  |  |  |  |  |

12

 $^{93}_{38}\mathrm{Sr}_{55}$ -12

L

From ENSDF

 $^{93}_{38}\mathrm{Sr}_{55}$ -12

#### $^{93}$ Rb $\beta^-$ decay 1977Bi01 (continued)

#### $\gamma(^{93}\text{Sr})$ (continued)

| $E_{\gamma}^{\dagger}$   | $I_{\gamma}^{\dagger a}$    | E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$                       | $E_f$   | $\mathrm{J}_f^\pi$    | Comments                                                                   |
|--------------------------|-----------------------------|------------------------|------------------------------------------|---------|-----------------------|----------------------------------------------------------------------------|
| 4250.9 <sup>°</sup> 7    | 2.8 7                       | 6707.42?               |                                          | 2456.44 |                       |                                                                            |
| 4271.23 <sup>#c</sup> 19 | 19.3 <sup>#</sup> <i>13</i> | 5413.6                 | 3/2 <sup>(-)</sup> to 7/2 <sup>(-)</sup> | 1142.55 | $(5/2^+, 7/2, 9/2^+)$ | I $\gamma$ is too large for this placement (cf. I $\beta$ from TAGS data). |
| 4281.9 <i>3</i>          | 9.7 8                       | 4714.64                | 3/2,5/2,7/2                              | 432.604 | $(5/2,7/2,9/2)^+$     |                                                                            |
| 4387.9 <sup>°</sup> 4    | 6.7 8                       | 6707.42?               |                                          | 2319.10 | $(5/2^+, 7/2, 9/2^+)$ |                                                                            |
| 4461.4 4                 | 4.4 6                       | 4461.12                | 3/2,5/2,7/2                              | 0       | 5/2+                  |                                                                            |
| 4481.2° 6                | 3.4 6                       | 6260.72?               |                                          | 1779.78 | $(11/2^{-})$          |                                                                            |
| 4615.4 <sup>°</sup> 9    | 2.5 8                       | 6000.51?               |                                          | 1385.31 |                       | $E_{\gamma}$ : could also be placed from 5601 level.                       |
| 4627.0° 5                | 5.9 8                       | 5775.5?                |                                          | 1148.20 | $(5/2^+, 7/2, 9/2^+)$ |                                                                            |
| 4645.0 9                 | 2.5 8                       | 5631.2                 |                                          | 986.12  | $(9/2^+)$             |                                                                            |
| 4875.1° <i>3</i>         | 10.1 8                      | 6260.72?               |                                          | 1385.31 |                       |                                                                            |
| *4890.0 8                | 1.5 3                       |                        |                                          |         |                       |                                                                            |
| 4899.4 5                 | 2.8 4                       | 6707.42?               |                                          | 1808.48 | $(5/2^+, 7/2, 9/2^+)$ |                                                                            |
| 4947.5° 6                | 4.0 7                       | 6096.7?                |                                          | 1148.20 | $(5/2^+, 7/2, 9/2^+)$ |                                                                            |
| 4953.9° 11               | 2.1 5                       | 6096.7?                |                                          | 1142.55 | $(5/2^+, 7/2, 9/2^+)$ |                                                                            |
| <sup>x</sup> 4971.8 6    | 1.9 4                       |                        |                                          |         |                       |                                                                            |
| *4996.8 5                | 2.9.5                       |                        |                                          |         |                       |                                                                            |
| ×5137.9 10               | 5.1 15                      |                        |                                          |         |                       |                                                                            |
| *5154.6 <i>10</i>        | 1.3 4                       |                        |                                          |         |                       |                                                                            |
| ~5164.8 11               | 1.1 4                       | 5205 5                 | (5/0 - 7/0 -)                            | 0       | 5 /0±                 |                                                                            |
| 5390.7 9                 | 1.74                        | 5395.5                 | (5/2 , 1/2 )                             | 0       | 5/2                   |                                                                            |
| ~5409.0 /                | 2.5 4                       |                        |                                          |         |                       |                                                                            |

<sup>†</sup> From 1977Bi01, except as noted. Data from 1977Bi01 and 1975Br03 are typically in excellent agreement. However, those from 1974Ac04 show systematic differences;  $E\gamma$  tends to be higher than in 1977Bi01 and  $I\gamma$  is usually low, sometimes by a factor of at least two.

<sup>‡</sup> From  $\alpha(K)$ exp.

13

<sup>#</sup> Also observed in studies other than 1977Bi01.

<sup>(a)</sup> 1986Ka20 report I(K x ray)/(I(219 $\gamma$ )+I(432 $\gamma$ ))=0.0063 22 in spectrum gated by 710 $\gamma$  (after correction for I(K x ray) arising from 213 transition). Based on mult(213 $\gamma$ ),  $\Delta \pi$  is the same for the 219 and 432 transitions. This ratio is consistent with mult=M1 or E2 for both transitions and rules out mult=E1. However, 1974Ac04 report  $\alpha$ (K)exp(219 $\gamma$ )<0.010 and  $\alpha$ (K)exp(432 $\gamma$ )<0.0015, both of which indicate mult=E1. The evaluator adopts the conclusions of 1986Ka20.

 $^{\&}$  E $\gamma$  also approximates that required for a 5396 to 4992 transition.

<sup>*a*</sup> For absolute intensity per 100 decays, multiply by 0.0202 *10*.

<sup>b</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>c</sup> Placement of transition in the level scheme is uncertain.

 $x \gamma$  ray not placed in level scheme.

#### <sup>93</sup>**Rb** $\beta^-$ decay 1977Bi01



7.423 min 24



#### $^{93}$ Rb $\beta^-$ decay 1977Bi01

#### Decay Scheme (continued)

Intensities:  $I_{(\gamma+ce)}$  per 100 parent decays Legend  $I_{\gamma} < 2\% \times I_{\gamma}^{max}$  $I_{\gamma} < 10\% \times I_{\gamma}^{max}$  $I_{\gamma} > 10\% \times I_{\gamma}^{max}$  $5/2^{-1}$ 0 5.84 s 2  $Q_{\beta^-} = 7465 \ 9$  $\%\beta^{-}=100$ 93<sub>37</sub>Rb<sub>56</sub>  $I\beta^-$ Log ft3.0° (5/2<sup>-</sup>,7/2<sup>-</sup>) 0.31 5.75 5395.5 3/2-,5/2-,7/2-1.03 5.24 5384.61 ≥5.5 0.74  $\approx 5200$ 3/2,5/2,7/2 5.85 0.50 5012.24 (7/2)-0.61 5.78 4991.28 (7/2) 5.54 4913.09 1.22 0.41 6.10 3/2,5/2,7/2 4790.38 3/2,5/2,7/2 0.83 5.84 4714.64 3/2<sup>(-)</sup>,5/2,7/2 0.46 6.23 4509.26  $\geq 5.9$ 1.48 ≈4250 (5/2+,7/2) 2.19 5.89 3934.66 + 3/2-,5/2-,7/2 5.6 5.50 3890.64  $(5/2^+, 7/2)$ 1.82 6.00 -3876.73  $(5/2^{-}, 7/2)$  $(3/2^{-}, 5/2^{-}, 7/2)$ (3/2, 5/2, 7/2)3.72 5.73 -3803.73 0.59 6.53 3789.19 (5/2+,7/2,9/2+) 0.21 7.24 3256.40 0.50 7.03 2869.07 (5/2+,7/2,9/2+) 0.26 2782.20 7.4 (≥7/2) 2770.69 (5/2+,7/2,9/2+) 1 0.44 7.19 2621.39 | † 2553.80 2456.44 (5/2+,7/2,9/2+) 0.56 7.21 2292.87  $\leq 0.74$  $\geq 7.2$ 2054.02  $(5/2^+, 7/2, 9/2^+)$  $(11/2^-)$  $\geq 7.0$  $\leq 1.5$ 1808.48  ${\leq}0.63$  $\geq 7.3$ 1 1779.78  $(5/2^+, 7/2, 9/2^+)$  $\leq 1.0$  $\geq 7.2$ 1562.95 <3.2 1385.31 > 6.8 $(7/2^+)$ 0.52 7.61 . 1 1238.24  $\underbrace{(5/2^+,7/2,9/2^+)}_{(5/2^+,7/2,9/2^+)}$  $\leq 1.2$  $\geq 7.3$ 1148.20 1  $\leq 1.8$  $\geq 7.1$ 1142.55 0.6 7.6 986.12 (5/2,7/2,9/2)+  $\leq 6.3$  $\geq 6.8$ 432.604 <0.3 ns  $5/2^{+}$ 0 35 6.14 7.423 min 24

15

93<sub>38</sub>Sr<sub>55</sub>

#### <sup>93</sup>Rb $\beta^-$ decay 1977Bi01



<sup>93</sup><sub>38</sub>Sr<sub>55</sub>

#### <sup>93</sup>Rb $\beta^-$ decay 1977Bi01

#### Decay Scheme (continued)



<sup>93</sup><sub>38</sub>Sr<sub>55</sub>

#### <sup>93</sup>Rb $\beta^-$ decay 1977Bi01

#### Decay Scheme (continued)

Intensities:  $I_{(\gamma+ce)}$  per 100 parent decays



#### $^{93}$ Rb $\beta^{-}$ decay 1977Bi01



 $^{93}_{38}{
m Sr}_{55}$ 

#### $^{93}$ Rb $\beta^{-}$ decay 1977Bi01



20

### $^{93}$ Rb $\beta^-$ decay 1977Bi01

#### Decay Scheme (continued)

