History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 112,1163 (2011)	15-Dec-2010					

 $Q(\beta^{-}) = -8205 4$; S(n) = 10987 4; S(p) = 5580 4; $Q(\alpha) = -4627 5 2012Wa38$ Note: Current evaluation has used the following Q record -8203.0 610986 55578 6 -4624 6 2003Au03,2009AuZZ.

 $Q(\beta^{-})$, S(n), S(p), Q(α): from 2009AuZZ (cf. -8090 syst, 10930 syst, 5620 90, -4690 90, respectively, from 2003Au03).

 $\Delta S_n = 310$ from systematics (2003Au03).

 $Q(\varepsilon-p)=2305 5 (2009AuZZ) (cf. 2250 90 (2003Au03)).$

⁹³Ru Levels

The adopted level scheme is taken from (⁴⁰Ca,4pn γ), with the addition of the 734-keV isomeric state. The adopted order of the 168 γ -177 γ cascade is established by the observed 168 γ -721 γ coincidence, and is the reverse of that suggested in the (α ,3n γ) data set.

Cross Reference (XREF) Flags

			A B C	${}^{92}Mo(\alpha,3n\gamma), \qquad D \qquad {}^{93}Rh \ \varepsilon \ decay$ ${}^{93}Ru \ IT \ decay \qquad E \qquad {}^{98}Be({}^{107}Ag,X\gamma)$ ${}^{58}Ni({}^{40}Ca,4pn\gamma), \qquad \qquad$					
E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments					
0#	$(9/2)^+$	59.7 s 6	ABCDE	$\%\varepsilon + \%\beta^+ = 100$					
				T _{1/2} : from decay of strongest γ rays in ⁹³ Tc following ⁹³ Ru ε decay (1976De37). Others: 1976DiZP (54.9 s 17), 1973Ni04, 1972Do04, 1955At22. J ^{π} : log ft=5.3 to J ^{π} =9/2 ⁺ ; log ft=6.3 to J ^{π} =(7/2 ⁺); log ft=7.5, log f ^{1u} t=9.0 to J ^{π} =(13/2) ⁻ .					
734.40 10	$(1/2)^{-}$	2) ⁻ 10.8 s <i>3</i>	В	$\%$ IT=22.0 23; $\%\varepsilon + \%\beta^+ = 78.0$ 23; $\%\varepsilon p = 0.027$ 5 (1983Ay01)					
				J [*] : log ft =4.5 to J^* =1/2 ,3/2 ; systematics of N=49 isotones; similarity of 93m Pu and 91m Mo decay schemes					
				$T_{1/2}$: from IT decay.					
1359.42 10			D	J^{π} : 1359 γ to (9/2) ⁺ g.s.					
1392.11 [#] 20	$(13/2)^+$		A CDE	J ^{π} : E2 1392 γ to (9/2) ⁺ g.s.; band assignment.					
1629.92 10			D	π_{-1242}					
1842.1 3	(17/0) +			J [*] : 1842γ to $(9/2)^+$ g.s.					
1936.3" 3	$(1/2)^{+}$	0.40	ACE	J ⁴ : E2 544 γ to (13/2) ⁺ 1392; band assignment.					
2082.5" 9	(21/2)	2.49 μs 15	ACE	 μ=+8.9/0 21; Q=+0.04 1 μ: from TDPAD (Ag host) (1989Ra17, from g=0.850 2 from 1983Gr33 and adopted J); no Knight shift correction applied. Q: time differential perturbed angular distribution (1991Ha04, (³²S,p3nγ)). J^π: E2 146γ to (17/2)⁺ 1936; band assignment. T_{1/2}: unweighted average of 2.6 μs 2 from (⁴⁰Ca,4pnγ), 2.6 μs 3 and 2.05 					
				μ s 10 from (α ,3n γ) and 2.7 μ s 2 from fragment- γ (t) in ⁹ Be(¹⁰⁷ Ag,X γ); the weighted average is 2.27 μ s 17.					
2112.8 [#] 7	(15/2 ⁺)		A C	XREF: A(2103). J^{π} : D γ to $J^{\pi} = (17/2)^+$ and to $(13/2)^+$; band assignment; shell-model predicts a $15/2^+$ level in ⁹³ Ru lying ≈ 50 keV above a $21/2^+$ level (1976Se01)					
2129.4 [#] 7 2273.53 <i>14</i>	(17/2 ⁺)		C D						
2280.5 [@] 7	(17/2 ⁻)	35 ns 4	A C	μ =+4.36 <i>17</i> μ : From DPAD (1989Ra17) and adopted J; no Knight shift correction applied,					

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁹³Ru Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
			but this is expected to be small for the Ag host used. Based on g=0.51 2 (1983Gr33). J^{π} : 168 γ to J^{π} =(15/2 ⁺) 2113; shell-model predicts a 17/2 ⁻ level at an energy within 120 keV of this level (1976Se01).
-			T _{1/2} : from (α ,3n γ).
2713.3 [@] 10	$(19/2^{-})$	С	
2733.7 <mark>#</mark> 11	$(23/2^+)$	С	
3121.1 [#] <i>11</i>	$(25/2^+)$	С	
3240.5 [@] 10	$(21/2^{-})$	С	
3375.5 [#] 12	$(25/2^+)$	С	
3722.7 [@] 11	$(25/2^{-})$	С	
4022.0 [#] 12	$(27/2^+)$	С	
4237.0 [@] 13	$(27/2^{-})$	С	
4500.2 [#] 12	$(29/2^+)$	С	
4787.2 [@] 15	$(29/2^{-})$	С	
4850.2 [@] 14	$(31/2^{-})$	С	
5271.7 [#] 14	$(31/2^+)$	С	
5342.7 ^{#} 13	$(33/2^+)$	с	
5971.0 [@] 14	$(35/2^{-})$	С	
6376.8 ^{&} 14	$(33/2^+)^{\&}$	C	
7849.6 14	$(37/2^+)$	C	
7864.9 15	$(35/2^+, 37/2^+)$	С	
7981.0 <i>14</i>	(37/2 ⁺)	С	Possible configuration: 88 Sr(2 ⁺) \otimes (33/2 ⁺ 6377 level) (1994Ar33). Supported by preferred decay to 6377 level.
8204.1 16	(39/2 ⁻)	С	Possible configuration: $\pi(f_{5/2})^{-1} \pi(p_{1/2}^2 g_{9/2}^5) \nu(\gamma_{9/2})^{-1}$ (1994Ar33).
8331.1 16	(37/2 ⁻ ,39/2 ⁻)	С	Possible configuration: $\pi(p_{3/2})^{-1} \pi(p_{1/2}^2 g_{9/2}^3) \nu(\gamma_{9/2})^{-1}$ (1994Ar33); if correct, J=37/2 is preferred.
8463.9 15	$(39/2^+)$	С	
8735.7 16	$(39/2^+)$	C	
8962.1 15	(37/2)	C	
9145.8 15	$(39/2^{-},41/2^{+})$ $(39/2^{-})$	C	
9637 4 15	$(39/2^{-})$	c	
9694.0 18	$(41/2^+ \text{ to } 45/2^+)$	c	
10049.3 17	$(41/2^{-})$	С	
10083.7 20	$(43/2^+ \text{ to } 47/2^+)$	С	
10365.7 15	$(41/2^{-})$	С	
10684.1 16	$(43/2^{-})$	C	
10884.4 20	$(45/2^{+})$ 10 49/2 ⁺) (45/2 ⁻)	C	
11950.2 19	$(47/2^{-})$	c	

 † From least-squares fit to Ey.

- [‡] From (⁴⁰Ca,4pn γ), based on measured γ anisotropies and decay patterns, and structure suggested by shell-model calculations and systematics of N=49 isotones and N=50 isotones (unless noted otherwise). See 1994Ar33 for further discussion of the likely configurations for ⁹³Ru states.
- [#] Band(A): $(\pi (p_{1/2}^2 g_{9/2}^4))(v g_{9/2}^{-1})$ states. Principal configuration suggested by 1994Ar33. [@] Band(B): $(\pi (p_{1/2} g_{9/2}^5))(v g_{9/2}^{-1})$ states. Principal configuration suggested by 1994Ar33. [&] Probable configuration= $(\pi g_{9/2}^6)(v g_{9/2}^{-1})$ (1994Ar33).

Adopted Lev						Adopted	l Levels, Gan	mas (continued)
γ (⁹³ Ru)								
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	α [#]	Comments
734.40	(1/2)-	734.4 1	100	0	(9/2)+	[M4]	0.0287	B(M4)(W.u.)=7.8 9 E _{γ} : from ⁹³ Ru IT decay.
1359.42 1392.11 1629.92 1842 1	(13/2)+	1359.4 [‡] <i>1</i> 1392.1 <i>2</i> 1629.9 [‡] <i>1</i> 482.6 [‡] 3	100^{\ddagger} 100 100^{\ddagger} 65^{\ddagger} 23	0 0 1359 42	$(9/2)^+$ $(9/2)^+$ $(9/2)^+$	E2		E_{γ} ,Mult.: from (α ,3n γ).
1936.3 2082.5	$(17/2)^+$ $(21/2)^+$	1842.4 [‡] 6 544.2 2 146.3 <i>10</i>	$100^{\ddagger} 42$ 100 100	0 1392.11 1936.3	$(9/2)^+$ $(13/2)^+$ $(17/2)^+$	E2 E2	0.331 10	E_{γ} ,Mult.: from (α,3nγ). B(E2)(W.u.)=0.102 7 Mult.: O from $\gamma(\theta)$ in (α.3nγ): not M2 from RUL.
2112.8	$(15/2^+)$	176.6 <i>10</i> 720.7 <i>10</i>	100 <i>4</i> 60 <i>6</i>	1936.3 1392.11	$(17/2)^+$ $(13/2)^+$	D D		Order of 177 γ and 168 γ is reversed in (α ,3n γ) data set.
2129.4	(17/21)	193.3 10 737.3 10	54 <i>11</i> 100 <i>16</i>	1936.3 1392.11	$(17/2)^+$ $(13/2)^+$	Q		
2273.53		643.6 <i>⁺ 1</i> 2273.8 [‡] 9	88^{+} 17 100^{\ddagger} 27	1629.92 0	(9/2)+			
2280.5	(17/2 ⁻)	151.3 <i>10</i> 167.8 <i>10</i>	23.6 <i>16</i> 100 <i>4</i>	2129.4 2112.8	$(17/2^+)$ $(15/2^+)$	[E1] (E1)	0.0422 <i>10</i> 0.0313 <i>7</i>	B(E1)(W.u.)=4.7×10 ⁻⁷ 7 B(E1)(W.u.)=1.44×10 ⁻⁶ 19 Mult.: D from (⁴⁰ Ca,4pn γ); $\Delta\pi$ =(yes) from level scheme. Order of 177 γ and 168 γ is reversed in (α ,3n γ) data set.
		343.8 10	10.2 26	1936.3	$(17/2)^+$	[E1]		$B(E1)(W.u.)=1.7\times10^{-8}5$
2713.3	$(19/2^{-})$	432.6 10	100	2280.5	$(17/2^{-})$	D		
2733.7	$(23/2^+)$	651.2 10	100	2082.5	$(21/2)^+$	D		
3121.1	$(25/2^{+})$	387.2 10	100 3	2/33.7	$(23/2^{+})$	D		
3240 5	$(21/2^{-})$	527 1 10	2.09	2082.5	(21/2) $(19/2^{-})$	D		
5210.5	(21/2)	960.1 10	68.5	2280.5	$(17/2^{-})$	D		
3375.5	$(25/2^+)$	1293.1 10	100	2082.5	$(21/2)^+$	Q		
3722.7	$(25/2^{-})$	482.1 10	52.4 22	3240.5	$(21/2^{-})$	Q		
		601.5 10	100 3	3121.1	$(25/2^+)$			
1000	(a= (a+)	989.1 <i>10</i>	25.2 20	2733.7	$(23/2^+)$	D		
4022.0	$(27/2^{+})$	646.6 <i>10</i>	100 7	33/5.5	$(25/2^{+})$	D		
4237.0	$(27/2^{-})$	514 3 10	20.5	3121.1	$(25/2^{-})$ $(25/2^{-})$	D		
4500.2	$(29/2^+)$	478.1 10	100 4	4022.0	$(25/2^{-})$ $(27/2^{+})$	D		
.200.2	(=>/=)	1379.2 10	35 3	3121.1	$(25/2^+)$	-		
4787.2	$(29/2^{-})$	550.3 10	100	4237.0	$(27/2^{-})$	D		
4850.2	$(31/2^{-})$	63.1 10	76 7	4787.2	$(29/2^{-})$	D		
		613.0 10	100 5	4237.0	$(27/2^{-})$	Q		

ω

From ENSDF

 $^{93}_{44}$ Ru $_{49}$ -3

L

Adopted Levels, Gammas (continued)

 $\gamma(^{93}\text{Ru})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [†]	Comments
5271.7	$(31/2^+)$	771.5 10	100	4500.2	$(29/2^+)$	D	
5342.7	$(33/2^+)$	71.2 10	20 3	5271.7	$(31/2^+)$		
		492.4 10	16 4	4850.2	$(31/2^{-})$		
		842.3 10	100 6	4500.2	$(29/2^+)$	Q	
5971.0	$(35/2^{-})$	1120.9 10	100	4850.2	$(31/2^{-})$	Q	
6376.8	$(33/2^+)$	1104.8 10	100 38	5271.7	$(31/2^+)$	Ď	
		1876.9 <i>10</i>	<797	4500.2	$(29/2^+)$		$I\gamma = 735\ 62$ for doublet.
7849.6	$(37/2^+)$	1473.1 <i>10</i>	18 8	6376.8	$(33/2^+)$		
		1878.7 <i>10</i>	<319	5971.0	$(35/2^{-})$		$I\gamma = 294\ 25$ for doublet.
		2506.9 10	100 15	5342.7	$(33/2^+)$	Q	
7864.9	$(35/2^+, 37/2^+)$	2521.9 10	100	5342.7	$(33/2^+)$	D	
7981.0	$(37/2^+)$	1604.0 10	100 10	6376.8	$(33/2^+)$	(Q)	
		2638.5 10	33 6	5342.7	$(33/2^+)$		
8204.1	$(39/2^{-})$	2233.0 10	100	5971.0	$(35/2^{-})$		
8331.1	(37/2-,39/2-)	349.9 10	100 11	7981.0	$(37/2^+)$		
8463.9	$(39/2^+)$	598.8 10		7864.9	$(35/2^+, 37/2^+)$		
		614.4 <i>10</i>	100 33	7849.6	$(37/2^+)$		
8735.7	$(39/2^+)$	886.0 10	100	7849.6	$(37/2^+)$		
8962.1	$(37/2^{-})$	2990.9 10	100	5971.0	$(35/2^{-})$	D	
9145.8	$(39/2^+, 41/2^+)$	410.0 10	100 13	8735.7	$(39/2^+)$		
		682.0 10	73 10	8463.9	$(39/2^+)$		
		1280.8 10		7864.9	$(35/2^+, 37/2^+)$		
		1296.4 <i>10</i>	90 18	7849.6	$(37/2^+)$		
9425.7	$(39/2^{-})$	463.6 10	100 8	8962.1	$(37/2^{-})$	D	
		1221.3 10	36.8	8204.1	$(39/2^{-})$	(D)	
		3454.8 10	17 7	5971.0	$(35/2^{-})$		
9637.4	$(39/2^{-})$	675.0 10	75 10	8962.1	$(37/2^{-})$		
0.60.4.0		1656.5 10	100 15	7981.0	$(37/2^+)$		
9694.0	$(41/2^+ \text{ to } 45/2^+)$	548.1 10	100	9145.8	$(39/2^+, 41/2^+)$		
10049.3	$(41/2^{-})$	411.8 10	100	9637.4	$(39/2^{-})$	D	
10083.7	$(43/2^+ \text{ to } 47/2^+)$	389.7 10	100	9694.0	$(41/2^+ \text{ to } 45/2^+)$	D	
10365.7	$(41/2^{-})$	728.4 10	197	9637.4	$(39/2^{-})$	D	
		939.6 10	100 13	9425.7	(39/2)	D	
		1403.9 10	19 /	8962.1	(37/2)		
		2034.5 10	20 /	8331.1	(37/2,39/2)		
10004.1	(12)	2161.9 10	29 10	8204.1	(39/2)	D	
10684.1	(43/2)	318.3 10	100.5	10365.7	(41/2)	D	
		1046.5 10	20.3	9637.4	(39/2)	(\mathbf{O})	
10004 4	(45/0+ + 40/0+)	1258./ 10	13 3	9425.7	(39/2)	(Q)	
10884.4	(45/2° to 49/2°)	800.7 10	100 15	10083./	$(43/2^+ \text{ to } 41/2^+)$	D	
11400.0	$(15/2^{-})$	1190.5 10	100 42	9094.0	$(41/2^{-} 10 43/2^{+})$		
11400.8	(45/2)	/10.8 10	100 42	10684.1	(43/2)		

 $^{93}_{44}\mathrm{Ru}_{49}$ -4

From ENSDF

 $^{93}_{44}\mathrm{Ru}_{49}$ -4

 $\gamma(^{93}\text{Ru})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]
11400.8	$(45/2^{-})$	1351.4 10	100	10049.3	$(41/2^{-})$	0
11950.2	(47/2)	1266.1 10	100	10684.1	(43/2)	Q

[†] From (⁴⁰Ca,4pn γ), if not indicated otherwise. The uncertainty in E γ ranges from 0.2 to 1.0 keV; the evaluator has assigned the upper limit (1.0 keV) to all data. [‡] From ⁹³Rh ε decay.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

From ENSDF

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

7

