⁹³Pd ε decay 2000Sc31

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 112, 1163 (2011)	15-Dec-2010				

Parent: ⁹³Pd: E=0.0; $J^{\pi} = (9/2^+)$; $T_{1/2} = 1.00 \text{ s } 9$; $Q(\varepsilon) = 9570 \text{ SY}$; $\%\varepsilon + \%\beta^+$ decay=100.0

2000Sc31: source from mass-separated A=93 product following the ⁵⁸Ni(⁴⁰Ca,an) reaction At E=188 MeV on an enriched ⁵⁸Ni target; plastic scin detector and 12 Ge detectors; measured $E\gamma$, $I\gamma$, $\gamma\beta$ + coin and $\gamma\gamma\beta$ + coin. see also 2002Ro25.

⁹³ Rh	Levels
------------------	--------

E(level) [†]	J π ‡	Comments				
0.0	$(9/2^+)$					
239.8	$(7/2^+)$					
621.6	$(5/2^+)$					
864.1		J^{π} : 13/2 ⁺ suggested by 2000Sc31 was based on the supposition that the 864.1 γ seen In ⁹³ Pd ε decay is the same As the 865.9 γ previously reported In the ⁵⁸ Ni(⁴⁰ Ca,3p2n γ) reaction by 1995Ro06. In ⁹⁴ Ag εp decay, the latter line has $E\gamma$ =866.0 <i>I</i> and deexcites a (17/2 ⁺) 1719 level. the evaluator concludes that the 864.1 γ from ε decay must be a different transition.				

[†] From least-squares fit to $E\gamma$, allowing equal weight for all data.

[‡] From Adopted Levels.

 $\gamma(^{93}\text{Rh})$

I γ normalization: the evaluator has not normalized this decay scheme; the Q value (9.5 MeV) is large, $\%\epsilon$ p is unknown, feeding to the ⁹³Rh g.s. is expected and it is possible that significant $\epsilon + \beta^+$ feeding occurs to excited states whose deexcitation gammas are too weak to have been seen In the experiment of 2000Sc31. however, from a comparison of I(511 γ) with that expected based on the level scheme, 2000Sc31 estimate an upper limit of 30% 9 for the combined $\epsilon + \beta^+$ feeding of the g.s. and any As yet unobserved excited states.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	Comments
239.7	81 7	239.8	(7/2+)	0.0	(9/2+)	[M1]	0.0321	α (K)=0.0280 4; α (L)=0.00334 5; α (M)=0.000621 9; α (N+)=0.0001082 16 α (N)=0.0001030 15; α (O)=5.21×10 ⁻⁶ 8
381.7 621.7 864.1	25 <i>3</i> 9.6 20 9.1 20	621.6 621.6 864.1	(5/2 ⁺) (5/2 ⁺)	239.8 0.0 0.0	(7/2 ⁺) (9/2 ⁺) (9/2 ⁺)			

[†] From 2000Sc31. all transitions are In coincidence with γ^{\pm} .

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁹³Pd ε decay 2000Sc31

Decay Scheme

Legend

