${ }^{93} \mathbf{P d} \varepsilon$ decay \quad 2000Sc31

$\frac{\text { Type }}{\text { Full Evaluation }} \frac{\text { Author }}{\text { Coral M. Baglin }} \quad$| History |
| :---: |
| NDS 112, 1163 (2011) |

Parent: ${ }^{93} \mathrm{Pd}: \mathrm{E}=0.0 ; \mathrm{J}^{\pi}=\left(9 / 2^{+}\right) ; \mathrm{T}_{1 / 2}=1.00 \mathrm{~s} 9 ; \mathrm{Q}(\varepsilon)=9570 \mathrm{SY} ; \% \varepsilon+\% \beta^{+}$decay $=100.0$
2000Sc31: source from mass-separated $\mathrm{A}=93$ product following the ${ }^{58} \mathrm{Ni}\left({ }^{40} \mathrm{Ca}\right.$, an) reaction At $\mathrm{E}=188 \mathrm{MeV}$ on an enriched ${ }^{58} \mathrm{Ni}$ target; plastic scin detector and 12 Ge detectors; measured $\mathrm{E} \gamma, \mathrm{I} \gamma, \gamma \beta+$ coin and $\gamma \gamma \beta+$ coin. see also 2002 Ro 25.
${ }^{93} \mathrm{Rh}$ Levels

$\underline{\mathrm{E}\left(\text { level) }{ }^{\dagger}\right.}$	$\mathrm{J}^{\pi} \ddagger$	Comments
0.0	$\left(9 / 2^{+}\right)$	
239.8	$\left(7 / 2^{+}\right)$	
621.6	$\left(5 / 2^{+}\right)$	
864.1		$\mathrm{J}^{\pi}: 13 / 2^{+}$suggested by 2000 Sc 31 was based on the supposition that the 864.1γ seen $\operatorname{In}{ }^{93} \mathrm{Pd} \varepsilon$ decay is the same As the 865.9γ previously reported In the ${ }^{58} \mathrm{Ni}\left({ }^{40} \mathrm{Ca}, 3 \mathrm{p} 2 \mathrm{n} \gamma\right)$ reaction by 1995 Ro 06 . In ${ }^{94} \mathrm{Ag} \varepsilon \mathrm{p}$ decay, the latter line has $\mathrm{E} \gamma=866.01$ and deexcites a $\left(17 / 2^{+}\right) 1719$ level. the evaluator concludes that the 864.1γ from ε decay must be a different transition.

\dagger From least-squares fit to $\mathrm{E} \gamma$, allowing equal weight for all data.
\ddagger From Adopted Levels.

$$
\gamma\left({ }^{93} \mathrm{Rh}\right)
$$

I γ normalization: the evaluator has not normalized this decay scheme; the Q value (9.5 MeV) is large, $\%$ pp is unknown, feeding to the ${ }^{93} \mathrm{Rh}$ g.s. is expected and it is possible that significant $\varepsilon+\beta^{+}$feeding occurs to excited states whose deexcitation gammas are too weak to have been seen In the experiment of 2000 Sc 31 . however, from a comparison of $\mathrm{I}(511 \gamma)$ with that expected based on the level scheme, 2000 Sc 31 estimate an upper limit of $30 \% 9$ for the combined $\varepsilon+\beta^{+}$feeding of the g.s. and any As yet unobserved excited states.

$\mathrm{E}_{\gamma}{ }^{\dagger}$	$\mathrm{I}_{\gamma}{ }^{\dagger}$	E_{i} (level)	J_{i}^{π}	E_{f}	J_{f}^{π}	Mult.	α^{\ddagger}	Comments
239.7	817	239.8	$\left(7 / 2^{+}\right)$	0.0	$\left(9 / 2^{+}\right)$	[M1]	0.0321	$\begin{aligned} & \alpha(\mathrm{K})=0.02804 ; \alpha(\mathrm{L})=0.003345 ; \alpha(\mathrm{M})=0.0006219 ; \\ & \quad \alpha(\mathrm{N}+. .)=0.000108216 \\ & \alpha(\mathrm{~N})=0.000103015 ; \alpha(\mathrm{O})=5.21 \times 10^{-6} 8 \end{aligned}$
381.7	253	621.6	(5/2 ${ }^{+}$)	239.8	$\left(7 / 2^{+}\right)$			
621.7	9.620	621.6	$\left(5 / 2^{+}\right)$	0.0	(9/2+)			
864.1	9.120	864.1		0.0	$\left(9 / 2^{+}\right)$			

\dagger From 2000Sc31. all transitions are In coincidence with $\gamma^{ \pm}$.
\ddagger Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

