Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Coral M. Baglin	NDS 112,1163 (2011)	15-Dec-2010						

 $Q(\beta^{-})=-9.9\times10^{3} \text{ syst}; S(n)=14084 6; S(p)=2000 4; Q(\alpha)=-4042 5$ 2012Wa38

Note: Current evaluation has used the following Q record -9570 syst 14084 6 2001 5 -4041 5 2003Au03,2009AuZZ. Q(β⁻), S(n), S(p), Q(α): from 2009AuZZ (cf. -9470 570 (syst.), 13880 570 (syst.), 2007 9, -3750 450 (syst.), respectively, from 2003Au03).

 ΔQ -=400 (2009AuZZ).

Q(\varepsilon-p)=2624 5 (2009AuZZ) (cf. 2470 syst (2003Au03)).

For shell-model calculations see, e.g., 1997He24 and 2000Sc31.

⁹³Rh Levels

Cross Reference (XREF) Flags

A 58 Ni(40 Ca,3p2n γ)

B 93 Pd ε decay

 94 Ag ε p decay

С

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0 ^{<i>a</i>}	(9/2+)	12.2 s 7	ABC	$%ε+%β^+=100$ T _{1/2} : weighted average of 11.9 s 7 (2004De40; from fit to growth and decay time behavior of the 7 lines attributed to ⁹³ Rh decay) and 13.9 s <i>16</i> (2001Ki13). Other datum: 5.7 s + <i>13–9</i> (preliminary result from 2000WeZZ; probably superseded by 2001Ki13).
240.10 10	$(7/2^+)^{@}$		BC	
621.9 7	$(5/2^+)^{@}$		BC	
852.90 ^a 10	$(13/2^+)$		AC	
864.1 10	@		В	
894.20 10	$(11/2^+)$		С	
1451.1 6	$(7/2^+)$		С	
1463.9 7	$(13/2^+)$		C	
1630.1 10	$(9/2^+)$		C	
1/18.4 J 1718 01a 15	$(11/2^+)$ $(17/2^+)$			
$2052 31^{a} 18$	(17/2) $(21/2^+)$		AC	
2197.8? 5	$(5/2^+)$		° C	
2595.1 ^{<i>a</i>} 11	$(23/2^+)$		AC	
2890.5 ^a 11	$(25/2^+)$		AC	
3543.0 ^b 11	$(25/2^+)$		AC	
4089.0 ^b 11	$(27/2^+)$		AC	
4252.1 ^b 11	$(29/2^+)$		AC	
4549.1 ^b 13	$(31/2^+)$		AC	
4611.4 ^c 11	(27/2 ⁻ ,29/2 ⁻)		AC	
4708.1 ^b 16	$(33/2^+)$		AC	
4749.0 ^c 11	(29/2-,31/2-)		AC	
5159.2 ^b 19	(35/2+)		Α	E(level): an alternative value of 5171.6 is possible because the order of the 451γ - 463γ cascade could not Be established in (40 Ca, $3p2n\gamma$).
5447.0 ^C 11	$(29/2 \text{ to } 35/2)^{(-)}$		AC	
5622.8 ^b 22	$(37/2^+)$		A	
5693.9 ^c 11	$(31/2 \text{ to } 39/2)^{(-)}$		AC	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁹³Rh Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF		
5827.6 ^{#d} 24		A		
6388.6 ^c 15	$(35/2 \text{ to } 41/2)^{(-)}$	AC		
6579.7 [°] 15	$(35/2 \text{ to } 47/2)^{(-)}$	С		
6709.9? ^c 15	$(37/2 \text{ to } 47/2)^{(-)}$	С		
6857.9? ^C 18	$(39/2 \text{ to } 47/2)^{(-)}$	С		
6924.5 ^{#d} 24	$(41/2^+)$	Α		

- [†] From least-squares fit to $E\gamma$, allowing 1 keV uncertainty in $E\gamma$ data for which the authors did not state the uncertainty.
- [‡] Tentative values from (⁴⁰Ca,3p2n γ), based on level systematics in neighboring N=48 odd-A nuclei (1995Ro06), except as noted. Supported by shell-model calculations in (p_{1/2}, g_{9/2}) configuration space for both protons and neutrons; the calculations describe the π =+ yrast states well.
- [#] Possible π =+, seniority=7 yrast state, by analogy with shell-model calculations for ⁹¹Tc.
- ^(a) Shell-model calculations by 2000Sc31 predict $7/2^+$, $5/2^+$ and $13/2^+$ levels at E=263, 601 and 877, respectively. However, the evaluator presumes that the predicted $13/2^+$ state is the 853 level, not the 864 level (suggested by 2000Sc31).
- [&] Proposed by 2004Mu30 in 94 Ag ε p decay.
- ^{*a*} Band(A): Possible π =+, seniority=3 states (1995R006). By analogy with shell-model calculations for ⁹¹Tc.
- ^b Band(B): Possible π =+, seniority=5 states. By analogy with shell-model calculations for ⁹¹Tc (1995R006).
- ^c Band(C): $\pi = (-)$ sequence (2004Mu30). π based on absence of transitions from higher members to $\pi = (+)$ sequence of levels. Built on $(27/2^-, 29/2^-)$ 4611 level.
- ^d Band(D): Possible π =+, seniority=7 states. By analogy with shell-model calculations for ⁹¹Tc (1995Ro06).

Adopted Levels, Gammas (continued)									
γ (⁹³ Rh)									
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult.	α [@]	Comments	
240.10	$(7/2^+)$	240.1 [‡] 1	100‡	0.0	$(9/2^+)$	[M1]	0.0319	E_{γ} : from ε decay.	
621.9	$(5/2^+)$	381.7 [#]	100 [#] 12	240.10	$(7/2^+)$				
		622 [#] 1	38 [#] 8	0.0	(9/2+)			Other Ey: 621.7 in $({}^{40}Ca, 3p2n\gamma)$.	
852.90	$(13/2^+)$	852.9 [‡] 1	100 [‡]	0.0	(9/2+)				
864.1		864.1 [#]	100 [#]	0.0	(9/2+)				
894.20	$(11/2^+)$	654 [‡] 1		240.10	$(7/2^+)$				
		894.2 [‡] 1	100 [‡] 5	0.0	(9/2+)				
1451.1	$(7/2^+)$	557 [‡] 1		894.20	$(11/2^+)$				
		1451.0 [‡] 7	100 [‡] 32	0.0	(9/2+)				
1463.9	$(13/2^+)$	570 [‡] 1		894.20	$(11/2^+)$				
		1463.7 [‡] 8	100 [‡] 40	0.0	$(9/2^+)$				
1630.1	$(9/2^+)$	1390 [‡] 1	100	240.10	$(7/2^+)$				
1718.4	$(11/2^+)$	1718.4 [‡] 5	100	0.0	$(9/2^+)$				
1718.91	$(17/2^+)$	866.0 [‡] 1	100	852.90	$(13/2^+)$				
2052.31	$(21/2^+)$	333.4 [‡] 1	100	1718.91	$(17/2^+)$	[E2]			
2197.8?	$(5/2^+)$	2197.8 [‡] 5	100	0.0	$(9/2^+)$				
2595.1	$(23/2^+)$	542.8	100	2052.31	$(21/2^+)$				
2890.5	$(25/2^+)$	295.4 [‡] 2	100	2595.1	$(23/2^+)$				
3543.0	$(25/2^+)$	652.5 2	53 27	2890.5	$(25/2^+)$				
4000.0	(27/0+)	948# <i>1</i>	100 27	2595.1	$(23/2^+)$			Other E γ : 947.4 in (⁴⁰ Ca,3p2n γ).	
4089.0	$(21/2^{+})$	343.3	100 20	3543.0	$(25/2^{+})$			Other I. 77 12 from an descen	
4050 1	$(20/2^{+})$	$1493.8^{+}3$	05 <i>17</i>	2595.1	$(23/2^{+})$			Other $I\gamma$: 2/ 12 from ε p decay.	
4232.1	(29/2) $(31/2^+)$	297.2	100.27	2890.3 4252.1	(23/2) $(29/2^+)$			Other $\Xi\gamma$: 1500.4 iii ($Ca, 3p2ir\gamma$).	
1517.1	(31/2)	460.0	80 20	4089.0	$(27/2^+)$				
4611.4	(27/2 ⁻ ,29/2 ⁻)	522.4 [‡] 1	100	4089.0	$(27/2^+)$				
4708.1	$(33/2^+)$	159 [‡] 1	100	4549.1	$(31/2^+)$			Other Ey: 158.5 in $({}^{40}Ca, 3p2n\gamma)$.	
4749.0	(29/2 ⁻ ,31/2 ⁻)	137.6 [‡] 1	100 15	4611.4	(27/2 ⁻ ,29/2 ⁻)			I _{γ} : weighted average of 100 24 from (⁴⁰ Ca,3p2n γ) and 100 20 from ε p decay.	
		496.9 [‡] 3	34 8	4252.1	(29/2+)			I _{γ} : weighted average of 29 <i>12</i> from (⁴⁰ Ca,3p2n γ) and 37 <i>10</i> from ε p decay.	
5159.2	$(35/2^+)$	451.1	100	4708.1	$(33/2^+)$				
5447.0	(29/2 to 35/2) ⁽⁻⁾	698.0 [‡] 1	100	4749.0	(29/2 ⁻ ,31/2 ⁻)				
5622.8	$(37/2^+)$	463.5	100	5159.2	$(35/2^+)$				

ω

From ENSDF

 $^{93}_{45}\text{Rh}_{48}\text{-}3$

Adopted Levels, Gammas (continued)

$\gamma(^{93}\text{Rh})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
5693.9	(31/2 to 39/2) ⁽⁻⁾	246.9 [‡] 1	100	5447.0	(29/2 to 35/2) ⁽⁻⁾	6709.9?	(37/2 to 47/2) ⁽⁻⁾	130.2 [‡] 3	100	6579.7	(35/2 to 47/2) ⁽⁻⁾
5827.6		204.8	100	5622.8	$(37/2^+)$	6857.9?	(39/2 to 47/2) ⁽⁻⁾	148 [‡] 1	100	6709.9?	(37/2 to 47/2) ⁽⁻⁾
6388.6	(35/2 to 41/2) ⁽⁻⁾	694.7	100	5693.9	(31/2 to 39/2) ⁽⁻⁾	6924.5	$(41/2^+)$	1301.7	100	5622.8	$(37/2^+)$
6579.7	$(35/2 \text{ to } 47/2)^{(-)}$	191.1 [‡] <i>1</i>	100	6388.6	$(35/2 \text{ to } 41/2)^{(-)}$						

[†] From (⁴⁰Ca,3p2nγ), except as noted. Uncertainty in Eγ unstated by authors.
[‡] From ⁹⁴Ag εp decay.
[#] From ⁹³Pd ε decay. Uncertainty in Eγ unstated by authors.
[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

From ENSDF

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{93}_{45}$ Rh₄₈

5

Adopted Levels, Gammas

 $^{93}_{45}Rh_{48}$