⁹⁴Ag εp decay **2004Mu30**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 112, 1163 (2011)	15-Dec-2010

Parent: ⁹⁴Ag: E \approx 660; J^{π}=(7⁺); T_{1/2}=0.61 s 2; Q(ϵ p)=8580 SY; % ϵ p decay=20.0

Parent: ⁹⁴Ag: E=6.67×10³ 64; J^{π} =(21⁺); T_{1/2}=0.39 s 4; Q(ε p)=8580 SY; % ε p decay=27.0

⁹⁴Ag(660)-E: from shell-model calculations (2002La18).

 94 Ag(660)-T_{1/2}: Recommended value from 2004Mu30.

⁹⁴Ag(660)-%ɛp decay: 20% is estimated by 2004Mu30; however, a 19% branch is shown In FIG.4 of 2004Mu32.

 94 Ag(6200)-Branching 27% is estimated by 2004Mu30; however, a 25% branch is shown In FIG.4 of 2004Mu32.

 94 Ag(6.67E3)-E: From E(p)=790 30 to E(93 Pd)=4994 and E(p)=1010 30 to E(93 Pd)=4751 in 94 Ag p decay (2005Mu15) assuming S(p)(94 Ag)=890 640 from systematics (2003Au03). However, see comment on E(94 Ag; 21⁺ isomer) in 94 Ag p decay.

 $S(p)(^{-1}Ag)=890\ 640$ from systematics (2003Au03). However, see comment on E(^{-1}Ag; 21^{-1} isomer) in ^{-1}Ag p decay. $^{94}Ag(6.67E3)-T_{1/2}$: Recommended value from 2004Mu30.

2004Mu30: ⁹⁴Ag source from ⁵⁸Ni(⁴⁰Ca,p3n) reaction at E=4.8 MeV/nucleon; reaction products stopped in FEBIAD-B3C ion source; GSI on-line mass separator. Measured Eγ, Eβ, E(p), Iγ, Iβ, γγ coin, p-γ-β coin, lifetime in an experiment using a gamma-detector array (17 individual Ge crystals, a Cluster, two Clover and two single Ge detectors) and three Si detectors. In a second experiment, β-feeding distributions, p-β-γ coin and p-x-γ coin were measured with a total absorption spectrometer (TAS) consisting of a large NaI crystal and several auxiliary detectors such as β and x-ray detectors as well as a ΔE-E proton detector. see also 2004Mu32, 2006Mu03, 2007Ro16.

The 23-ms g.s. activity of 94 Ag, due to its expected low spin (0⁺ from systematics) is not produced in the reaction used for the production of 94 Ag isomers.

Relative contribution of the (7^+) and (21^+) isomers is estimated to be 89% and 11%, respectively (2004Mu30).

⁹³Rh Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$\mathrm{J}^{\pi \ddagger}$
0.0#	(9/2+)	1718.91 [#] 15	$(17/2^+)$	4611.4 [@] 11	(27/2 ⁻ ,29/2 ⁻)
240.10 10	$(7/2^+)$	2052.31 [#] 18	$(21/2^+)$	4708.3 [#] 18	$(33/2^+)$
622.0 10	$(5/2^+)$	2197.8? 5	$(5/2^+)$	4749.0 [@] 11	(29/2 ⁻ ,31/2 ⁻)
852.90 [#] 10	$(13/2^+)$	2595.1 [#] 11	$(23/2^+)$	5447.0 [@] 11	(29/2 to 35/2) ⁽⁻⁾
894.20 10	$(11/2^+)$	2890.5 [#] 11	$(25/2^+)$	5693.9 [@] 11	(31/2 to 39/2) ⁽⁻⁾
1451.1 6	$(7/2^+)$	3543.0 [#] 11	$(25/2^+)$	6388.6 [@] 11	(35/2 to 41/2) ⁽⁻⁾
1463.9 7	$(13/2^+)$	4088.8 ^{#&} 5	$(27/2^+)$	6579.7 [@] 15	(35/2 to 47/2) ⁽⁻⁾
1630.1 10	$(9/2^+)$	4252.1 [#] 11	$(29/2^+)$	6709.9? [@] 15	(37/2 to 47/2) ⁽⁻⁾
1718.4 5	$(11/2^+)$	4549.3 [#] 15	$(31/2^+)$	6857.9? [@] 18	(39/2 to 47/2) ⁽⁻⁾

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

[#] Band(A): π =+ g.s. sequence.

[@] Band(B): π =(-) sequence. Based on (27/2⁻,29/2⁻) 4611 level.

& 2004Mu30 deduce 4088.7 3, the average of two experimental level energies: 4088.5 4 and 4088.9 4.

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_i (level)	${ m J}^{\pi}_i$	E_f	J_f^π	Comments
130.2 <i>3</i> 137.6 <i>1</i> 148 <i>1</i>	0.4 2 1.0 2	6709.9? 4749.0 6857.9?	$(37/2 \text{ to } 47/2)^{(-)} (29/2^{-},31/2^{-}) (39/2 \text{ to } 47/2)^{(-)} (22/2^{+})$	6579.7 4611.4 6709.9?	$(35/2 \text{ to } 47/2)^{(-)} (27/2^{-},29/2^{-}) (37/2 \text{ to } 47/2)^{(-)} (21/2^{+})$	
159 <i>1</i> 191.1 <i>1</i>	0.4 2 0.4 2	4708.3 6579.7	$(33/2^+)$ (35/2 to 47/2) ⁽⁻⁾	4549.3 6388.6	$(31/2^+)$ (35/2 to 41/2) ⁽⁻⁾	E_{γ} : Placement and intensity of transition deduced in 2004Mu30 by using coincident-proton threshold of 2.5 MeV.
Continued on next page (footnotes at end of table)						

$\gamma(^{93}\text{Rh})$

			⁹⁴ Ag	Ep decay	2004Mu30 (con	tinued)		
γ (⁹³ Rh) (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	J_i^π	\mathbf{E}_{f}	J_f^π	Mult.	α@	Comments
240.1 1	2.0 2	240.10	(7/2+)	0.0	(9/2+)	[M1]	0.0319	$\alpha(K)=0.0279 \ 4;$ $\alpha(L)=0.00332 \ 5;$ $\alpha(M)=0.000618 \ 9;$ $\alpha(N+)=0.0001077 \ 16$ $\alpha(N)=0.0001025 \ 15;$ $\alpha(O)=5.19\times10^{-6} \ 8$
246.9 <i>1</i>	0.7 1	5693.9	$(31/2 \text{ to } 39/2)^{(-)}$	5447.0	$(29/2 \text{ to } 35/2)^{(-)}$			
293.4 2 297.2 333.4 1	1.02 1.75 <i>1</i> 6	2890.3 4549.3 2052.31	$(2)/2^+)$ $(31/2^+)$ $(21/2^+)$	2393.1 4252.1 1718.91	$(25/2^+)$ $(29/2^+)$ $(17/2^+)$	[E2]	0.0199	E _γ : from Adopted Gammas. $ \alpha(K)=0.01711 24; $ $ \alpha(L)=0.00229 4; $ $ \alpha(M)=0.000427 6; $ $ \alpha(N+)=7.22\times10^{-5} 11$ $ \alpha(N)=6.93\times10^{-5} 10; $
x260±								$\alpha(O)=2.91\times10^{-6}$ 4
x440 [‡]								
496.9 <i>3</i>	0.37 10	4749.0 4611 4	$(29/2^{-},31/2^{-})$ $(27/2^{-},29/2^{-})$	4252.1	$(29/2^+)$ $(27/2^+)$			
542.8	<2.6	2595.1	(21/2, 29/2) $(23/2^+)$	2052.31	$(21/2^{+})$ $(21/2^{+})$			E _{γ} : from Adopted Gammas; E γ =543.7 2 (I γ =2.4 2) in 2004Mu30 is for a doublet comprised of the adopted 542.8 γ and 545.5 γ .
545.5	<2.6	4088.8	(27/2 ⁺)	3543.0	(25/2+)			I_{γ} : 2.4 2 for doublet. E_{γ} : from Adopted Gammas; see comment on 542.8 γ .
557 1 570 1 622 1 652.5 2 654 1 694.7	0.5 <i>3</i> 0.56 <i>13</i>	1451.1 1463.9 622.0 3543.0 894.20 6388.6	$(7/2^{+}) (13/2^{+}) (5/2^{+}) (25/2^{+}) (25/2^{+}) (11/2^{+}) (35/2 \text{ to } 41/2)^{(-)} (20/2 \text{ to } 25/2)^{(-)}$	894.20 894.20 0.0 2890.5 240.10 5693.9	$(11/2^{+}) (11/2^{+}) (9/2^{+}) (25/2^{+}) (7/2^{+}) (31/2 to 39/2)^{(-)} (20/2^{-} 21/2^{-}) $			I_{γ} : 2.4 2 for doublet. E_{γ} : from Adopted Gammas.
$^{x}705^{\ddagger}$	1.64 19	5447.0	$(29/2 \text{ to } 35/2)^{(1)}$	4749.0	(29/2 ,31/2)			
852.9 <i>1</i> 866.0 <i>1</i> 894.2 <i>1</i> 948 <i>1</i> 1361.7 <i>3</i>	11.3 5 3.24 16 4.3 2 0.36 12	852.90 1718.91 894.20 3543.0 4252.1	$(13/2^+)$ $(17/2^+)$ $(11/2^+)$ $(25/2^+)$ $(29/2^+)$	0.0 852.90 0.0 2595.1 2890.5	$(9/2^+) (13/2^+) (9/2^+) (23/2^+) (25/2^+)$			
1390 <i>I</i>	0 41 12	1630.1	$(9/2^+)$	240.10	$(7/2^+)$			
1451.0 7 1463.7 8	0.41 13 0.43 17	1451.1 1463.9	(1/2) $(13/2^+)$	0.0	$(9/2^{+})$ $(9/2^{+})$			
1493.8 3	0.7 3	4088.8	(27/2 ⁺)	2595.1	(23/2 ⁺)			E_{γ} : Placement and intensity of transition deduced in 2004Mu30 by using coincident-proton threshold of 2.5 MeV.
1505.4 <i>4</i> 1718.4 <i>5</i>	0.50 17 0.7 2	1718.4	$(11/2^+)$	0.0	(9/2+)			
[^] 1861.0 <i>3</i> 2197.8 <i>5</i>	0.53 <i>16</i> 0.88 <i>16</i>	2197.8?	$(5/2^+)$	0.0	$(9/2^+)$			

Continued on next page (footnotes at end of table)

⁹⁴Ag εp decay 2004Mu30 (continued)

γ (⁹³Rh) (continued)

[†] From 2004Mu30; uncertainties range from 0.1 to 1.1 keV.

^{\ddagger} Weak uncertain line. coincident with protons and γ^{\pm} only.

[#] For absolute intensity per 100 decays, multiply by 0.20.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

Delayed Protons (93Rh)

E(⁹³ Rh)	$I(p)^{\dagger\ddagger}$	Comments
0.0	3.3 7	I(p): Deduced from TAS measurements.
240.10	1.7	
622.0	0.4	
852.90	6.8	
894.20	3.0	
1451.1	0.3	
1463.9	0.3	
1718.4	0.5	
1718.91	1.3	
2052.31	0.0	
2197.8?	0.7	
2595.1	0.3	I(p): Derived by 2004Mu30 assuming I(333 γ)>I(543 γ)>[I(295 γ)+I(1494 γ)].
2890.5	0.2	
3543.0	0.1	
4088.8	0.1	I(p): Derived by 2004Mu30 assuming I(546γ)=I(543γ + 546γ)-I(543γ).
4252.1	0.0	
4708.3	0.3	
4749.0	0.1	
5447.0	0.8	
5693.9	0.6	
6579.7	0.4	
6709.9?	0.4	

 † Per 100 decays of the combined activity from two isomers.

[‡] For absolute intensity per 100 decays, multiply by 0.20.

⁹⁴Ag εp decay 2004Mu30

⁹⁴Ag εp decay 2004Mu30

Band(B): π =(-) sequence

 $^{93}_{45}\text{Rh}_{48}$