		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 112, 1163 (2011)	15-Dec-2010

Parent: ⁹³Kr: E=0; $J^{\pi}=1/2^+$; $T_{1/2}=1.286 \text{ s } 10$; $Q(\beta^-)=8485 8$; $\%\beta^-$ decay=100.0

Others: 1972Am01, 1972Mc04, 1973Cl02, 1974Ac04, 1975Br03, 1979Bo26, 1986Si20, 1988GrZX.

1979Bo26: curved crystal spectrometer; measured $E\gamma$ for three lines.

1977Bi01: Ge(Li), low energy photon spectrometer for E γ =0-350 keV; measured E γ , I γ (217 lines), $\gamma\gamma$ coin.

1975Br03: Ge(Li); measured E γ , I γ (47 lines), E β , I β , $\gamma\gamma$ coin, $\beta\gamma$ coin.

1974Ac04: Ge(Li) and Si(Li); measured E γ , I γ (84 lines), $\gamma\gamma$ coin, α (K)exp (relative to ⁸⁵Kr(304 γ) and ⁸⁵Rb(151 γ)).

The adopted decay scheme is that of 1977Bi01; for E(level)<3050, it is supported by extensive coin information. The schemes proposed by 1977Bi01 and 1975Br03 are in excellent agreement; however, of the 25 levels proposed in 1974Ac04, only 13 are common to the scheme of 1977Bi01. Placed γ rays whose E γ deviates significantly from the least-squares adjusted value are noted. Approximately 5.6% of I γ remains unplaced, and I β =-0.36 *18* is indicated for 1642 level, so decay scheme must be regarded as incomplete.

93Rb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	5/2-	5.84 s 2	$T_{1/2}$: from Adopted Levels.
253.39 <i>3</i>	3/2-,5/2-	57 μs 15	$T_{1/2}$: from Adopted Levels. Other: <0.5 ns (1986Si20).
266.86 3	$1/2^{-}, 3/2^{-}, 5/2^{-}$	2.0 ns 2	$T_{1/2}$: from $\beta\gamma$ coin (1986Si20).
323.95 <i>3</i>	$3/2^{-}, 5/2^{-}$	<0.7 ns	$T_{1/2}$: from 1986Si20.
506.02 4	$1/2^{-}, 3/2^{-}$	<0.7 ns	$T_{1/2}$: from 1986Si20.
820.53 <i>3</i>			
1350.18 <i>3</i>			
1557.40 9			
1563.03 4			
1641.07 4			
1642.08 8			$I\beta = -0.36$ 18 from intensity balance.
1688.72 4			
1850.20 7			
1880.39 6			
1964.64 5			
2009.33 7			
2083.88 6			
2169.14 8			
2210.60 6			
2264.84 12			
2285.76 4			
2609.47 6			
2664.84 6			
2745.28 12			
2814.99 8	1/2,3/2		
2855.94 4	$(3/2)^+$		
3002.12 6	$1/2^+, 3/2^+$		
3063.35 5	1/2,3/2		
3245.15 9			
3265.18 <i>13</i>			
3280.04 15	1/2,3/2		
3308.32 14	1/2,3/2		
3358.76 14			
3464.7 4	$1/2^{(-)}, 3/2$		
3493.73 12	1/2,3/2		
3551.55 7	1/2,3/2		
3631.4 <i>3</i>	1/2,3/2		
3733.98 15			

93 Kr β^- decay 1977Bi01 (continued)

93Rb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$						
3777.16 8		5048.98 12	1/2,3/2	5759.7 3	1/2+,3/2+	6260.1 5	1/2+,3/2+
3800.90 9		5237.65 <i>13</i>	$1/2^+, 3/2^+$	5859.84 12	$1/2^+, 3/2^+$	6572.20 20	$1/2^+, 3/2^+$
4050.69 14	1/2,3/2	5491.78 <i>14</i>	$1/2^+, 3/2^+$	5920.34 11	$1/2^+, 3/2^+$	6725.56 19	$1/2^+, 3/2^+$
4080.58 9	1/2,3/2	5496.27 17	$1/2^+, 3/2^+$	5965.48 18	$1/2^+, 3/2^+$		
4861.52 11	1/2,3/2	5665.51 <i>11</i>	$1/2^+, 3/2^+$	6070.51 <i>19</i>	$1/2^+, 3/2^+$		

[†] From least-squares fit to $E\gamma$, omitting 1596 γ (4 σ from expected value), and 1097 γ , 1238 γ (3 σ from expected $E\gamma$).

[‡] From Adopted Levels.

β^{-} radiations

 $\langle E_{\beta} \rangle = 2700\ 210\ (1982Al01)$ cf. 2768 145 calculated using the RADLST code for the decay scheme adopted here.

E(decay)	E(level)	Ιβ ^{-†#}	Log ft	Comments
(1759 8)	6725.56	1.39 14	4.14 5	av $E\beta = 691.0 \ 37$
(1913 8)	6572.20	0.51 4	4.72 4	av $E\beta = 761.1 \ 37$
(2225 8)	6260.1	0.31 9	5.21 13	av $E\beta = 905.4 \ 38$
$(2414 \ 8)$	6070.51	0.30 3	5.37 5	av $E\beta = 993.9.38$
(2520 8)	5965.48	1.38 12	4.79 4	av $E\beta = 1043.2 \ 38$
(2565 8)	5920.34	1.47 12	4.79 4	av $E\beta = 1064.4$ 38
(2625 8)	5859.84	1.11 9	4.96 4	av $E\beta = 1092.9 \ 38$
(2725 8)	5759.7	0.53 11	5.35 9	av $E\beta = 1140.1 \ 38$
(2819 8)	5665.51	0.42 18	5.51 19	av $E\beta = 1184.6 \ 38$
(2989 8)	5496.27	0.75 7	5.37 4	av $E\beta = 1264.8 \ 38$
(2993 8)	5491.78	0.72 6	5.39 4	av $E\beta = 1266.9 \ 38$
(3247 8)	5237.65	0.52 5	5.68 5	av E β =1387.8 39
(3436 8)	5048.98	0.30 4	6.03 6	av E β =1477.8 39
(3623 8)	4861.52	0.56 8	5.86 7	av $E\beta = 1567.4 \ 39$
(4404 8)	4080.58	0.91 11	6.02 6	av E β =1942.2 39
(4434 8)	4050.69	0.46 11	6.33 11	av $E\beta = 1956.6\ 39$
(4684 8)	3800.90	0.23 7	6.74 14	av E β =2076.9 39
(4708 8)	3777.16	0.40 8	6.50 9	av $E\beta = 2088.3 \ 39$
(4751 8)	3733.98	0.23 13	6.76 25	av Eβ=2109.1 39
(4854 8)	3631.4	0.38 5	6.59 6	av E β =2158.5 39
(4933 8)	3551.55	1.73 12	5.96 <i>3</i>	av E β =2197.0 39
(4991 8)	3493.73	1.08 10	6.19 4	av E β =2224.9 39
(5020 8)	3464.7	0.73 23	6.37 14	av E β =2238.9 39
(5126 [@] 8)	3358.76	≤0.22	≥6.9	av E β =2290.0 39
(5177 8)	3308.32	0.69 6	6.45 4	av $E\beta = 2314.3 \ 39$
(5205 8)	3280.04	0.86 8	6.37 4	av E β =2328.0 39
(5220 8)	3265.18	0.27 19	6.9 <i>3</i>	av Eβ=2335.1 39
(5240 8)	3245.15	0.20 8	7.01 18	av E β =2344.8 39
(5422 8)	3063.35	2.60 14	5.967 24	av E β =2432.5 39
(5483 8)	3002.12	4.26 23	5.774 24	av $E\beta = 2462.1 \ 39$
(5629 8)	2855.94	21.3 9	5.127 19	av E β =2532.7 39
(5670 8)	2814.99	2.17 15	6.13 <i>3</i>	av $E\beta = 2552.4$ 39
(5820 8)	2664.84	0.41 16	6.91 <i>17</i>	av E β =2624.9 39
(6199 8)	2285.76	1.50 17	6.47 5	av E β =2808.0 39
(6274 8)	2210.60	0.45 12	7.02 12	av E β =2844.3 39
(6401 8)	2083.88	0.13 7	7.59 24	av E <i>β</i> =2905.5 <i>39</i>
(6476 8)	2009.33	1.89 12	6.45 <i>3</i>	av Eβ=2941.5 39

Continued on next page (footnotes at end of table)

(8485 8)

				93 Kr β^- decay	1977Bi01 (continued)
				β^- radiat	ons (continued)
E(decay)	E(level)	Ιβ ^{-†#}	Log ft		Comments
(6520 8)	1964.64	1.05 12	6.72 5	av Eβ=2963.1 39	
(6605 8)	1880.39	2.48 15	6.38 <i>3</i>	av Eβ=3003.8 39	
(6796 [@] 8)	1688.72	0.20 13	7.5 3	av Eβ=3096.4 39	
(6844 @ 8)	1641.07	0.25 22	7.4 4	av Eβ=3119.4 <i>39</i>	
(6922 8)	1563.03	2.5 6	6.46 11	av Eβ=3157.1 39	
(7664 [@] 8)	820.53	0.6 3	7.29 22	av Eβ=3515.7 39	
(7979 8)	506.02	12.3 12	6.06 5	av E β =3667.5 39	
(8161 8)	323.95	10.0 15	6.19 7	av E β =3755.3 39	
(8218 8)	266.86	8.3 11	6.29 6	av E β =3782.8 <i>3</i> 9	
(8232 8)	253.39	6 <i>3</i>	6.43 22	av Eβ=3789.3 39	
(8485 8)	0	1.5 [‡] 15	7.1 5	av Eβ=3911.6 39	

[†] From intensity balance, except As noted. an intensity of of $0.5I\gamma \pm 0.5I\gamma$ is assigned for the three transitions (1596 γ , 1298 γ , 1097 γ) which fit their placements poorly.

av Eβ=3911.6 39

 \pm 5.0% 5 (1975Br03), 0% 5 (1974Ac04). The 1975Br03 datum is based on I(324 γ , 93 Rb)/I(590 γ , 93 Y) in source at saturation and %I(590 γ) (value unstated), and does not allow for adopted % $\beta^{-}n(^{93}\text{Kr})=2.01$ *16* (I β (g.s.) becomes 3.0% 5 after that correction). The 1974Ac04 datum is based on saturation values for Σ (I γ to 93 Rb g.s.), Σ (I γ to 93 Y g.s.) and authors' decay schemes, assuming $I\beta(g.s., {}^{93}Y)=0$ and $\%\beta^-n({}^{93}Kr)=2.6$. Compared with decay schemes adopted from 1977Bi01, the schemes in 1974Ac04 include 93% and 95%, respectively, of total I γ to g.s. for ⁹³Y and ⁹³Rb; consequently, $\Sigma(I\beta$ to excited states of 93 Sr)=97% 5 implied in 1974Ac04 should probably be reduced to 95% 5, resulting in I β (g.s.)=3% 5. Since the precision of the 1975Br03 datum (I β (g.s.)=3.0% 5, after above revision) appears to be unrealistically high, the evaluator adopts I β (g.s.)=1.5% 15. $(\log f^{1u}t > 8.5 \text{ implies } I\beta(g.s.) < 11\%).$

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

 $\gamma(^{93}\text{Rb})$

Iγ normalization: From Σ (I(γ+ce) to g.s.)=96.5% 15, based on Iβ(g.s.)=1.5% 15 and %β⁻n(⁹³Kr)=1.95 11.

1977Bi01 report many more γ rays than 1975Br03 or 1974Ac04 and resolve ten multiplets reported as single lines in prior studies. The evaluator, therefore, omits γ rays reported in 1974Ac04 alone (E γ =427.63, 658.50, 763.9, 802.3, 1077.4, 1209.1, 1750.1, 2626.3, 3171.0), but retains those γ 's which lie outside the energy range of 1977Bi01 (E γ =4128.1, 4369.1, 4672.2). The 507 γ in 1974Ac04 and 1975Br03 is due to summing (1977Bi01).

 α (K)exp data are from 1974Ac04.

4

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger f}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. &	δ&	α ^g	Comments
57.11 [‡] 5	10.70 [‡] 5	323.95	3/2-,5/2-	266.86	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻	(M1)		0.700	$\alpha(K)=0.616 \ 9; \ \alpha(L)=0.0706 \ 10; \\ \alpha(M)=0.01168 \ 17; \ \alpha(N+)=0.001369 \ 20 \\ \alpha(N)=0.001314 \ 19; \ \alpha(O)=5.52\times10^{-5} \ 8$
70.57 [‡] 5	64 [‡] <i>3</i>	323.95	3/2-,5/2-	253.39	3/2-,5/2-	(M1)		0.383	α (K)=0.338 5; α (L)=0.0385 6; α (M)=0.00637 9; α (N+)=0.000748 11 α (N)=0.000718 11; α (O)=3.02×10 ⁻⁵ 5
182.02 [‡] 5	223 [‡] 12	506.02	1/2 ⁻ ,3/2 ⁻	323.95	3/2 ⁻ ,5/2 ⁻	M1+E2	0.75 15	0.057 8	α (K)exp=0.050 6 α (K)=0.050 7; α (L)=0.0061 9; α (M)=0.00101 15; α (N+)=0.000114 16 α (N)=0.000110 16; α (O)=4.1×10 ⁻⁶ 5 E _Y : other: 181.99 2 (1974Ac04).
191.06 8	3.2 3	2855.94	$(3/2)^+$	2664.84					
239.26 22	6.6 12	1880.39		1641.07					
252.51 ⁺ 6	811+ 40	506.02	1/2-,3/2-	253.39	3/2-,5/2-	M1(+E2) ^C	≤0.46	0.0143 19	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0126 \ 16; \ \alpha(\mathbf{L}) = 0.00141 \ 20; \\ &\alpha(\mathbf{M}) = 0.00023 \ 4; \ \alpha(\mathbf{N}+) = 2.7 \times 10^{-5} \ 4 \\ &\alpha(\mathbf{N}) = 2.6 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 1.10 \times 10^{-6} \ 13 \end{aligned}$
253.42 [‡] 5	1708 [‡] <i>90</i>	253.39	3/2 ⁻ ,5/2 ⁻	0	5/2-	M1(+E2) ^C	≤0.44	0.0140 <i>17</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0124 \ 15; \ \alpha(\mathbf{L}) = 0.00139 \ 19; \\ &\alpha(\mathbf{M}) = 0.00023 \ 3; \ \alpha(\mathbf{N}+) = 2.7 \times 10^{-5} \ 4 \\ &\alpha(\mathbf{N}) = 2.6 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 1.08 \times 10^{-6} \ 12 \\ & \mathbf{E}_{\gamma}: \ \text{others:} \ 253.357 \ 22 \ \text{and} \ 253.13 \ 3 \\ &(1979Bo26), \ 253.58 \ 25 \ (1974Ac04). \\ & \mathbf{I}_{\gamma} = 41.1\% \ 16 \ \text{based on recommended decay} \\ & \text{scheme normalization.} \end{aligned}$
254.83 5	29 3	5920.34	$1/2^+, 3/2^+$	5665.51	$1/2^+, 3/2^+$				
266.83 [‡] 5	854 [‡] <i>4</i> 0	266.86	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻	0	5/2-	E2(+M1)	≥2.0	0.0256 17	$\begin{array}{l} \alpha(\text{K}) \exp = 0.0233 \ 23 \\ \alpha(\text{K}) = 0.0225 \ 15; \ \alpha(\text{L}) = 0.00267 \ 19; \\ \alpha(\text{M}) = 0.00044 \ 3; \ \alpha(\text{N}+) = 5.0 \times 10^{-5} \ 4 \\ \alpha(\text{N}) = 4.8 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 1.86 \times 10^{-6} \ 12 \\ \text{E}_{\gamma}: \ \text{others:} \ 266.87 \ 3 \ (1979\text{Bo26}), \ 266.78 \ 2 \\ (1974\text{Ac04}). \\ \text{I}_{\gamma} = 20.6\% \ 10 \ \text{based on recommended decay} \\ \text{scheme normalization.} \end{array}$

					93 Kr β^- decay	1977Bi ((continued)	
					ued)			
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger f}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^{\pi}$	Mult. <mark>&</mark>	α^{g}	Comments
292.88 [‡] 8	3.75 [‡] 25	1850.20		1557.40				
316.72 [‡] 9	10.0 [‡] 8	4050.69	1/2,3/2	3733.98				
323.89 [‡] 5	1000 [‡] <i>50</i>	323.95	3/2 ⁻ ,5/2 ⁻	0	5/2-	M1	0.00671 <i>10</i>	$\begin{array}{l} \alpha(\text{K}) \exp = 0.0051 \ 9 \\ \alpha = 0.00671 \ 10; \ \alpha(\text{K}) = 0.00594 \ 9; \ \alpha(\text{L}) = 0.000650 \ 9; \\ \alpha(\text{M}) = 0.0001073 \ 15; \ \alpha(\text{N}+) = 1.269 \times 10^{-5} \ 1 \\ \alpha(\text{N}) = 1.216 \times 10^{-5} \ 17; \ \alpha(\text{O}) = 5.25 \times 10^{-7} \ 8 \\ \text{E}_{\gamma}: \text{ others: } 323.92 \ 2 \ (1974\text{AcO4}), \ 323.28 \ 3 \ (1979\text{Bo26}; \\ \text{presumed misprint}). \\ \text{I}_{\gamma} = 24.1\% \ 11 \text{ based on recommended decay scheme normalization.} \end{array}$
399.01 12	4.9 4	2609.47		2210.60				
401.5 3	1.9 3	1964.64		1563.03				
480.44 20 491 93 22	3.6.5	2169.14	1/2 3/2	1688.72	1/2+ 3/2+			
496 56 5	75‡ 4	820.53	1/2,3/2	323.95	$3/2^{-} 5/2^{-}$			
519.78 19	4.0 5	3265.18		2745.28	5/2 ,5/2			
529.59 [‡] 5	20.4^{\ddagger} 11	1350.18		820.53				
553.53 20	3.2 5	820.53		266.86	1/2-,3/2-,5/2-			
555.41 15	4.3 5	3800.90		3245.15				
567.05 [‡] 11	6.9 [‡] 5	820.53		253.39	3/2-,5/2-			
570.16 [‡] 5	49.4 [‡] 25	2855.94	$(3/2)^+$	2285.76				
578.73 17	3.5 4	6070.51	$1/2^+, 3/2^+$	5491.78	$1/2^+, 3/2^+$			
616.51 11	4.2 3	5665.51	$1/2^+, 3/2^+$	5048.98	1/2,3/2			
623.64 10 643.18 23	2.14 23	2264.84		1641.07				
644 78 0	$11.2^{\ddagger}.12$	2205.70		1042.00				
686.51 11	5.6 4	2855.94	$(3/2)^+$	2169.14				
^x 713.3 4	2.3 4		(-/-)					
^x 716.9 5	2.1 5							
722.68 [‡] 8	11.3 [‡] 7	2285.76		1563.03				
733.72 [‡] 5	36.4 [‡] 19	2083.88		1350.18				
737.24 23	2.2 3	1557.40		820.53				
7/0.7 4	5.7 10	4050.69	1/2,3/2	3280.04	1/2,3/2			
777.57+ 10	8.3+ 6	3063.35	1/2,3/2	2285.76				
820.45 [‡] 5	154+ 8	820.53		0	5/2-			
844.12 0 852 66 12	25.5 12	1350.18	1/2 3/2	506.02 2210.60	1/2 ,3/2			
891 5 6	5.9 <i>5</i> 13 <i>4</i>	2855 94	$(3/2)^+$	1964 64				
895.05 13	7.2 6	2745.28	(0/2)	1850.20				
898.0 5	1.8 4	5759.7	1/2+,3/2+	4861.52	1/2,3/2			

 $^{93}_{37}$ Rb₅₆-5

From ENSDF

 $^{93}_{37}$ Rb₅₆-5

L

	93 Kr β^- decay 1977Bi01 (continued)											
γ (⁹³ Rb) (continued)												
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger f}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger f}$	E _i (level)	J_i^π	E_f	J_f^π	
921.19 [‡] 10	9.4 [‡] 7	3777.16		2855.94	(3/2)+	1505.76 [‡] 6	93 [‡] 5	2855.94	$(3/2)^+$	1350.18		
965.01 [‡] 11	9.0 [‡] 7	2814.99	1/2,3/2	1850.20		1508.41 23	9.0 13	3358.76		1850.20		
976.08 [‡] 6	29.4 [‡] 16	2664.84		1688.72		1525.89 20	8.9 10	1850.20		323.95	3/2-,5/2-	
1000.5 3	1.9 4	3265.18		2264.84		1528.9 <i>3</i>	6.0 9	3493.73	1/2,3/2	1964.64		
1005.65 9	6.8 5	2855.94	$(3/2)^+$	1850.20		^x 1543.15 [‡] 11	14.2 [‡] 10					
1026.19 [‡] 5	90 [‡] 5	1350.18		323.95	3/2-,5/2-	1556.32 12	10.3 8	3245.15		1688.72		
1046.57 14	5.0 5	2609.47		1563.03	1/2-2/2-	1563.09 6	39.2 21	1563.03		0	5/2-	
1051.7 5	5.15	3265.18		2210.60	1/2 ,3/2	1570.00	3.710 $351^{\ddagger}20$	3551 55	1/2 3/2	1064.64		
1054.55 25	4.4 J	5020.34	1/2+ 3/2+	4861.52	1/2 3/2	1506.20 d 6	57.3	1850.20	1/2,3/2	253 30	3/2- 5/2-	
1058.7177 1060.53 = 13	12.0 17 $15.0 \ddagger 18$	1920.54 1861 52	1/2, 3/2 1/2, 3/2	3800.00	1/2,3/2	$1590.20^{\circ} 0$ 1613 33 ^b 8	1/3 25	1820.20		255.59	3/2, $3/21/2^{-} 3/2^{-} 5/2^{-}$	
1080.6 7	1.7 6	6572.20	1/2, 3/2 $1/2^+, 3/2^+$	5491.78	$1/2^+.3/2^+$	1616.9.8	2.8 10	4861.52	1/2.3/2	3245.15	1/2 ,3/2 ,3/2	
$1083.42^{\ddagger} 6$	33.8 [‡] 18	1350.18	-/- ,-/-	266.86	$1/2^{-}.3/2^{-}.5/2^{-}$	$1627.10^{\ddagger} 6$	82 [‡] 4	1880.39	-/ -,-/-	253.39	$3/2^{-}.5/2^{-}$	
1097.14 ^d 9	5.3 10	1350.18		253.39	3/25/2-	1638.04 19	20.9 19	3280.04	1/2.3/2	1642.08	- 1) - 1	
1126.3 3	2.8 5	2814.99	1/2.3/2	1688.72	-1)-1	$1641.08^{\ddagger} 6$	60 [‡] 3	1641.07	1 7-1	0	5/2-	
1136.1 <i>3</i>	3.2 6	1642.08	1 / 1	506.02	$1/2^{-},3/2^{-}$	1651.87 [‡] 8	28.7 [‡] 17	3002.12	$1/2^+, 3/2^+$	1350.18	,	
1139.17 [‡] <i>18</i>	8.0 [‡] 7	3308.32	1/2,3/2	2169.14		1662.74 <i>13</i>	17.0 13	2169.14		506.02	$1/2^{-}, 3/2^{-}$	
1157.09 11	13.1 10	5237.65	$1/2^+, 3/2^+$	4080.58	1/2,3/2	1666.3 6	3.4 9	3308.32	1/2,3/2	1642.08		
1191.49 [‡] 9	9.6 [‡] 6	3800.90		2609.47		1681.9 7	4.0 10	3245.15		1563.03		
1214.98 [‡] 5	73 [‡] 4	2855.94	$(3/2)^+$	1641.07		1685.07 20	22.7 20	2009.33		323.95	3/2-,5/2-	
1235.5 3	5.5 9	3245.15		2009.33		1687.4 5	6.0 20	3245.15		1557.40		
1238.76 ^{+<i>u</i>} 6 1290.54 23	46.0 ⁺ 25 9.9 14	1563.03 1557.40		323.95 266.86	3/2 ⁻ ,5/2 ⁻ 1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻	1697.84 6 1704.45 <i>18</i>	58 <i>3</i> 10.5 <i>10</i>	1964.64 2210.60		266.86 506.02	$1/2^{-}, 3/2^{-}, 5/2^{-}$ $1/2^{-}, 3/2^{-}$	
1296.08 [‡] 6	78 [‡] 4	1563.03		266.86	1/2-,3/2-,5/2-	1710.78 [‡] <i>18</i>	20.8 [‡] 22	1964.64		253.39	3/2-,5/2-	
1309.51 21	4.3 5	1563.03		253.39	3/2-,5/2-	1713.4 3	12.8 20	3063.35	1/2,3/2	1350.18		
1313.44 14	12.2 10	3002.12	$1/2^+, 3/2^+$	1688.72		1742.49+ 8	53+ 3	2009.33		266.86	1/2-,3/2-,5/2-	
1318.384 14	38+ 3	1642.08		323.95	3/2-,5/2-	1745.28 20	17.2 18	3308.32	1/2,3/2	1563.03		
1350.24 6	31.0+ 17	1350.18		0	5/2-	1755.88+ 19	13.1+ 13	2009.33		253.39	3/2-,5/2-	
1360.26* 11	9.4* 7	3002.12	1/2 ,3/2	1642.08		17/9.68 8	23.8 14	2285.76	1 10 2 10	506.02	1/2 ,3/2	
1364.77* 9	28.3* 20	1688.72	1/0.2/0	323.95	3/2 ,5/2	1785.8 4	5.1 10	4050.69	1/2,3/2	2264.84		
13/4./8* 9	17.67 12	3063.35	1/2,3/2	1688.72		1/88.96 1/	13.0 12	2609.47	1/0.2/0	820.53		
1382.7 3 1387.92 9	7.8 <i>16</i> 56 <i>4</i>	3551.55 1641.07	1/2,3/2	2169.14 253.39	3/2-,5/2-	1794.804 8 1798.3 <i>3</i>	36.0+ 20 7.4 10	4080.58 4861.52	1/2,3/2 1/2,3/2	2285.76 3063.35	1/2,3/2	
1421.79 [‡] 6	40.0 [‡] 21	1688.72		266.86	1/2-,3/2-,5/2-	1803.71 <i>17</i>	9.2 8	5048.98	1/2,3/2	3245.15		
1435.35 [‡] <i>13</i>	42 [‡] 3	1688.72		253.39	3/2-,5/2-	1822.3 <i>12</i>	76	3464.7	$1/2^{(-)}, 3/2$	1642.08		
1445.64 18	8.4 9	5496.27	$1/2^+, 3/2^+$	4050.69	1/2,3/2	1823.8 8	14 6	3464.7	$1/2^{(-)}, 3/2$	1641.07		
1458.50 [‡] 9 1471.3 <i>3</i>	16.4 [‡] 11 15.7 17	1964.64 4080.58	1/2,3/2	506.02 2609.47	1/2 ⁻ ,3/2 ⁻	1840.1 <i>3</i> 1850.1 <i>3</i>	11 <i>3</i> 4.0 <i>6</i>	4050.69 1850.20	1/2,3/2	2210.60 0	5/2-	

6

From ENSDF

 $^{93}_{37}$ Rb₅₆-6

L

 $\gamma(^{93}\text{Rb})$ (continued)

E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger f}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
1862.68 12	11.0 8	3551.55	1/2,3/2	1688.72	
1886.79 [‡] 8	29.0 [‡] 17	2210.60		323.95	3/2-,5/2-
1929.7 <i>3</i>	13.2 20	3280.04	1/2,3/2	1350.18	
1943.54 11	19.7 13	2210.60		266.86	1/2-,3/2-,5/2-
1957.10 18	14.5 14	2210.60		253.39	3/2-,5/2-
1961.83 [‡] 6	74 [‡] 4	2285.76		323.95	3/2-,5/2-
1989.3 3	11.7 14	3631.4	1/2,3/2	1642.08	
1994.41 21	10.8 11	2814.99	1/2,3/2	820.53	
2011.68+ 19	9.5+ 9	2264.84		253.39	3/2-,5/2-
2018.87+ 7	58+ <i>3</i>	2285.76		266.86	1/2-,3/2-,5/2-
2035.26 [‡] 7	75 [‡] 4	2855.94	$(3/2)^+$	820.53	
2082.62 14	12.3 9	5859.84	$1/2^+, 3/2^+$	3777.16	
2088.24 19	11.3 10	3777.16		1688.72	
2160.0 5	2.8 0	3800.90 6260.1	1/2+ 2/2+	1641.07	1/2 2/2
2179.5 12	43	0200.1	1/2, $3/2$	4060.36	1/2,3/2
2181.54^{+} 12	48* 4	3002.12 5227.65	$1/2^+, 3/2^+$ $1/2^+, 3/2^+$	820.53	1/2+ 2/2+
2233.4 8	3.0 9 7 4 10	2745 28	1/2 ,3/2	506.02	1/2, $3/21/2^{-} 3/2^{-}$
2308.3 5	3.1 7	5859.84	$1/2^+.3/2^+$	3551.55	1/2.3/2
2342.4 8	7.3 25	2609.47	-/- ,-/-	266.86	$1/2^{-}, 3/2^{-}, 5/2^{-}$
2349.96 10	306 16	2855.94	$(3/2)^+$	506.02	1/2-,3/2-
2366.0 6	5.3 20	5859.84	$1/2^+, 3/2^+$	3493.73	1/2,3/2
2368.5 6	5.7 20	5920.34	$1/2^+, 3/2^+$	3551.55	1/2,3/2
2411.44 [‡] <i>15</i>	12.8 [‡] 9	2664.84		253.39	3/2-,5/2-
2424.26 25	7.2 8	3245.15		820.53	2 /2 - <i>5</i> /2 -
2491.2 3	19 3	2814.99	1/2,3/2	323.95	3/2-,5/2-
2496.05+ 10	95+ 5	3002.12	$1/2^+, 3/2^+$	506.02	1/2-,3/2-
2517.4 6	3.27	4080.58	1/2, 3/2	1563.03	1/2 2/2
2521.47 10	19.0 12	0572.20	$1/2^{+}, 3/2^{+}$	4050.69	1/2,3/2
2531.9+ 3	5.4 6	2855.94	$(3/2)^{+}$	323.95	3/2 ,5/2
2548.02+ 17	25.8+ 20	2814.99	1/2,3/2	266.86	1/2-,3/2-,5/2-
^x 2549.9 ^{#e} 6	13# 4				
2557.26 16	24.3 17	3063.35	1/2,3/2	506.02	$1/2^{-}, 3/2^{-}$
2561.33 12	41.4 24	2814.99	1/2,3/2	253.39	3/2 ,5/2
2589.18+ 15	21.2+ 14	2855.94	$(3/2)^+$	266.86	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻
2602.61+ 11	174+ 9	2855.94	$(3/2)^+$	253.39	3/2-,5/2-
2606.65 19	29.5 24	5965.48	$1/2^+, 3/2^+$	3358.76	1/0+ 2/0+
2003.49 20	21.2 22	3002.31	$1/2^+, 3/2^+$ $1/2^+, 3/2^+$	3002.12	$1/2^{+}, 3/2^{+}$ $3/2^{-}, 5/2^{-}$
2700 5 3	9111	4050 69	1/2, $3/21/2$ $3/2$	<i>3∠3.93</i> 1350 18	5/2 ,5/2
2100.5 5	7.1 11	1050.09	1/2,5/2	1550.10	

 \neg

E_{γ}^{\dagger}	$\mathrm{I}_{\gamma}^{\dagger f}$	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger f}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
2720.2 4	8.3 10	5965.48	$1/2^+, 3/2^+$	3245.15		3285.3 3	7.3 8	5496.27	$1/2^+, 3/2^+$	2210.60	
2739.14 12	21.1 12	3063.35	1/2,3/2	323.95	3/2-,5/2-	3294.8 8	8.6 15	3800.90		506.02	1/2-,3/2-
^x 2755.62 25	8.9 9					3298.31 [‡] <i>19</i>	26.6 [‡] 21	3551.55	1/2,3/2	253.39	3/2-,5/2-
^x 2772.9 3	8.5 9					3303.9 8	4.4 13	4861.52	1/2,3/2	1557.40	
*2782.26 20	22.9 18					3307.2 7	4.2 14	3631.4	1/2,3/2	323.95	3/2-,5/2-
2796.56 16	15.0 10	3063.35	1/2,3/2	266.86	1/2-,3/2-,5/2-	3356.0 [‡] 5	9 4 3	5965.48	$1/2^+, 3/2^+$	2609.47	
2809.92 [‡] 12	18.3 [‡] 10	3063.35	1/2,3/2	253.39	3/2-,5/2-	3358.8 10	5.0 25	3358.76		0	5/2-
2826.62 24	8.1 8	5491.78	$1/2^+, 3/2^+$	2664.84		3379.7 4	7.0 10	5665.51	$1/2^+, 3/2^+$	2285.76	
2838.5 <i>3</i>	7.5 9	5048.98	1/2,3/2	2210.60		3408.09 [‡] 22	18.9 [‡] 14	5491.78	$1/2^+, 3/2^+$	2083.88	
^x 2846.0 5	27 12					3412.7 5	5.8 10	5496.27	$1/2^+, 3/2^+$	2083.88	
2852.6 5	7.9 18	3358.76	(2/2) +	506.02	$1/2^{-}, 3/2^{-}$	3445.1 6	2.7 5	6260.1	$1/2^+, 3/2^+$	2814.99	1/2,3/2
2855.95 11	90.5	2855.94	$(3/2)^{+}$	0 820 52	5/2	3453.3 3	8.4 <i>10</i>	3///.10 6725.56	1/2+ 2/2+	323.95	3/2 ,5/2
2913.5 5	0.0 10 7 3 12	57507	1/2+ 3/2+	020.33 2814 00	1/2 3/2	3460.7 0	29 J 13 A	3464.7	1/2, $3/21/2^{(-)} 3/2$	0	5/2-
2944.0 4	25.1 17	6725.56	$1/2^{+}, 3/2^{+}$ $1/2^{+}, 3/2^{+}$	3777.16	1/2,3/2	3467.2 10	11 5	3733.98	1/2**,3/2	266.86	$1/2^{-}, 3/2^{-}, 5/2^{-}$
2956.68 [‡] 16	24.8 [‡] 17	3777.16		820.53		^x 3471.3 5	6.3 14				
^x 2972.22 [‡] 20	18.1 [‡] <i>18</i>					3482.4 5	4.9 8	5491.78	$1/2^+, 3/2^+$	2009.33	
2998.5 <i>3</i>	26 6	3265.18		266.86	1/2-,3/2-,5/2-	^x 3582.7 3	6.3 6				
3000.5 5	14 6	5665.51	$1/2^+, 3/2^+$	2664.84		3634.7 <i>3</i>	7.9 9	5920.34	$1/2^+, 3/2^+$	2285.76	
3014.7 5	13 4	5759.7	$1/2^+, 3/2^+$	2745.28		3645.9 5	9.7 22	5496.27	$1/2^+, 3/2^+$	1850.20	
3026.5 <i>3</i>	7.2 10	3280.04	1/2,3/2	253.39	3/2-,5/2-	3649.2 4	12.7 22	5859.84	$1/2^+, 3/2^+$	2210.60	
*3097.7 5	3.2 8	2250 76		252.20	2/2- 5/2-	3655.5 5 X2705 87 16	5./9	5920.34	1/2 ,3/2	2264.84	
3103.40 20	12.210	5558.70	1/2+ 2/2+	233.39	5/2 ,5/2	3703.87 10	12.5 0	5050.04	1/2+ 2/2+	2002.00	
3150.8 3	8./ ⁺ 21	5965.48	$1/2^+, 3/2^+$	2814.99	1/2,3/2	3776.03	0.1 / 1.6 5	5065 49	$1/2^+, 3/2^+$	2083.88	
3190.8 7	899	6070.51	$\frac{1/2}{1/2^+}, \frac{3/2}{3/2^+}$	2855.94	$\frac{1}{2}, \frac{3}{2}$	3793.8 11 3887 1 4	1.0 5	5905.48 5237.65	$\frac{1/2}{1/2^+}, \frac{3/2}{3/2^+}$	2109.14	
3220 3 3	$7.2^{+}8$	4861.52	1/2 ,5/2	1641.07	(3/2)	$x_{A01A} = 1$	25.0	5257.05	1/2 ,5/2	1550.10	
$3220.3 \cdot 3$	1.2.0	4001.52	1/2,3/2	266.96	1/0= 2/0= 5/0=	4014.1 11 X4022.00.20	2.5 10				
3226.70* 15	41* 3	3493.73	1/2,3/2	266.86	1/2 ,3/2 ,5/2	×4032.88 20	8.8 /				
3229.9 7	6.1 20	4050.69	1/2,3/2	820.53		$^{4128.1}$ ^{#a} 10	9" 7 #				
3250.3 3	6.5 7	5859.84	$1/2^+, 3/2^+$	2609.47		$x^{4369.1}$ ^{#4} 7	5 # 3				
3260.7 5	3.6 6	6725.56	$1/2^+, 3/2^+$	3464.7	$1/2^{(-)}, 3/2$	$x4672.2^{\#} 6$	8 [#] 4				
3281.1 7	3.3 8	5491.78	$1/2^+, 3/2^+$	2210.60							

[†] From 1977Bi01. The highest precision $E\gamma$ data are from 1977Bi01 and 1974Ac04; agreement is excellent for low $E\gamma$ but, for $E\gamma$ above \approx 1700, data from 1974Ac04 tend to be higher than those from 1977Bi01. I γ data from 1977Bi01 and 1975Br03 are, with a few exceptions, in good agreement; except for $E\gamma$ <1000, those from 1974Ac04 are, typically, low relative to those of 1977Bi01 (some by a factor of \approx 2). The distribution of I γ between members of the 253-keV doublet varies greatly among authors.

[‡] Observed in 1977Bi01 and at least one other decay study.

 ∞

 $\gamma(^{93}\text{Rb})$ (continued)

[#] From 1974Ac04 only.

[@] Other Εγ: 820.47 2 (1974Ac04).

& Based on $\alpha(K)$ exp.

^{*a*} Assigned by 1974Ac04 to deexcite a 3656 level which evaluator does not adopt; only two γ 's deexcite this 3656 level, and their energy consistency is not good.

 b Ey is also correct for a transition connecting the 3494 and 1880 levels.

^{*c*} $\alpha(K)$ exp for doublet consistent only with mult.=M1(+E2) for both components or with mult.=E2 for one component and mult.=E1 for the other. Since components connect levels having the same π (based on $\alpha(K)$ exp for 182 γ and 323 γ), the former alternative is dictated; in this case, 1974Ac04 deduce $(0.0108 \le \alpha(K) \exp(252.5) \le 0.0142)$ and $(0.0108 \le \alpha(K) \exp(253.4) \le 0.0137)$.

^{*d*} E γ at least 3σ from least-squares adjusted value.

^{*e*} Probably same γ as 2548.0 γ in 1977Bi01.

^f For absolute intensity per 100 decays, multiply by 0.0241 8.

g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Decay Scheme (continued)

 $^{93}_{37}{
m Rb}_{56}$

Decay Scheme (continued)

⁹³₃₇Rb₅₆

Decay Scheme (continued)

 $^{93}_{37}{
m Rb}_{56}$