²⁵²Cf SF decay 2009Hw03

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Coral M. Baglin	NDS 112, 1163 (2011)	15-Dec-2010						

Parent: 252 Cf: E=0.0; J^{π}=0⁺; T_{1/2}=2.645 y 8; %SF decay=? Other: 2010Si17 (see 248 Cm SF decay dataset).

²⁵²Cf source with α decay intensity of 62 ν Ci sandwiched between Fe foils within a polyethylene ball; GAMMASPHERE array (101 Ge detectors); measured E γ (E>33 keV), I γ , 3-fold and higher γ coincidences, K x ray(Pm)- γ - γ coin (to identify Rb transitions).

93Rb Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0#	5/2-	J^{π} : from Adopted Levels.
733.40 [#] 24 912.71 24	$(7/2^{-})$ $(7/2^{-})$	J^{π} : from Adopted Levels; authors propose (9/2 ⁻).
1285.21 [@] 22	$(9/2^+)$	
2031.6 [@] 4 2315.3 4	(13/2+)	
2942.8 [@] 5	$(17/2^+)$	
3235.0 <i>5</i> 3406.5 <i>6</i>	$(17/2^+)$	J^{π} : from Adopted Levels.
3940.8 [@] 6 4086.9 6	(21/2+)	

[†] From least-squares fit to $E\gamma$.

[‡] Authors' suggested values, based on comparison of deduced level structure with that of the ⁹²Kr core and, for the π =+ states, with that for ⁸⁹Rb (which was supported by measured ADO ratios).

[#] Band(A): $(\pi f_{5/2}) \otimes ({}^{92}\text{Kr g.s. band})$ (2009Hw03). Assignment based on similarity between E(733 level) and E(2⁺ 769 level) In ${}^{92}\text{Kr}$ assuming adopted J^{π}(g.s.).

^(a) Band(B): $(\pi g_{9/2}) \otimes ({}^{92}\text{Kr g.s. band})$ (2009Hw03). $\alpha = +1/2$ band. energies relative to the 1285 level are very similar to g.s. band energies for ${}^{90}\text{Kr}$ and ${}^{92}\text{Kr}$, but differ from those of ${}^{92}\text{Sr}$ and ${}^{94}\text{Sr}$.

γ (⁹³ Rb)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
171.5 3	2	3406.5		3235.0	$(17/2^+)$			
372.5 <i>3</i>	23	1285.21	$(9/2^+)$	912.71	$(7/2^{-})$	D		
551.8 <i>3</i>	1	1285.21	$(9/2^+)$	733.40	$(7/2^{-})$	D		
733.4 <i>3</i>	52	733.40	$(7/2^{-})$	0.0	$5/2^{-}$			
746.4 <i>3</i>	16	2031.6	$(13/2^+)$	1285.21	$(9/2^+)$	Q		
911.2 <i>3</i>	6	2942.8	$(17/2^+)$	2031.6	$(13/2^+)$			
912.7 <i>3</i>	100	912.71	$(7/2^{-})$	0.0	5/2-			
998.0 <i>3</i>	5	3940.8	$(21/2^+)$	2942.8	$(17/2^+)$			
1144.1 <i>3</i>	1	4086.9		2942.8	$(17/2^+)$			
1203.4 3	3	3235.0	$(17/2^+)$	2031.6	$(13/2^+)$			
1285.2 3	10	1285.21	(9/2+)	0.0	5/2-	(M2)	0.000653 10	$\alpha = 0.000653 \ 10; \ \alpha(K) = 0.000575 \ 8;$ $\alpha(L) = 6.20 \times 10^{-5} \ 9; \ \alpha(M) = 1.024 \times 10^{-5} \ 15;$ $\alpha(N+) = 6.02 \times 10^{-6} \ 9$ $\alpha(N) = 1.165 \times 10^{-6} \ 17; \ \alpha(O) = 5.09 \times 10^{-8} \ 8;$
1402.6 3	4	2315.3		912.71	(7/2 ⁻)			α (IPF)=4.80×10 ⁻⁶ 7

Continued on next page (footnotes at end of table)

²⁵²Cf SF decay 2009Hw03 (continued)

γ (⁹³Rb) (continued)

[†] From 2009Hw03. Uncertainty In I γ is unstated by authors.

[‡] From Adopted Gammas.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁹³₃₇Rb₅₆

⁹³₃₇Rb₅₆