²⁴⁸Cm SF decay 2010Si17

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Coral M. Baglin	NDS 112, 1163 (2011)	15-Dec-2010							

Parent: ²⁴⁸Cm: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=3.48\times10^5$ y 6; %SF decay=?

Dataset includes some information from $^{235}U(n,F\gamma)$ and ^{252}Cf SF decay also.

²⁴⁸Cm SF decay and ²⁵²Cf SF decay: sources placed At center of EUROGAM-II (300 ns time window) and GAMMASPHERE (900 ns time window) arrays, respectively; measured $E\gamma$, $I\gamma$, highfold coin γ data, angular correlations between delayed γ -rays (²⁴⁸Cm source).

 235 U(n,F γ): cold neutron beam, thin 235 U target, fission rate $\approx 10^6$ per S; unslowed fission fragments collected In thin Al stopper foil on which a 15-detector array was focused (3 Ge detectors, 5 EUROGAM phase-1 detectors and the Cologne 7-Ge crystal cluster detector); FIFI fission-fragment identifier to identify complementary fission fragments (tof from 2 sets of microchannel plates and E from CF₄ gas axial ionization chamber); measured delayed γ cascades from ns to μ s isomers, fragment- γ - γ coin, isomer T_{1/2}. shell model calculations.

⁹³Rb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	5/2-		J^{π} : from Adopted Levels.
733.6	$(7/2^{-})$		
912.8	$(1/2^{-})$		
1285.2 [#]	$(9/2^+)$		
2015.8			
2031.3 [#]	$(13/2^+)$		
2576.3			
2942.8 [#]	$(17/2^+)$		
3032.2			
3234.3	(17/2)		
3405.6	(19/2)		
3885.5			
3941.0 [#]	$(21/2^+)$		
4086.3			
4319.8			
4322.1	$(23/2^{-})$		
4423.0	(27/2 ⁻)	111 [@] ns <i>11</i>	J ^{π} : level T _{1/2} is consistent with Weisskopf estimate for an E2 100-keV transition to the (23/2) 4322 level; similarity of this isomer to the K ^{π} =27/2 ⁻ π g _{9/2} $\otimes \nu$ (g _{7/2} h _{11/2}) isomer In the ⁹⁵ Y isotone suggests the same dominant configuration for this level; supported by shell model calculations (2010Si17).
5159.2	(29/2,31/2)		

[†] From least-squares fit to $E\gamma$, assigning equal weight to all data.

[‡] Authors' recommended values.

[#] Band(A): π =+ sequence.

[@] Weighted average of 114 ns *14* from exponential + background fit to time spectra of gammas deexciting isomer when gated by prompt 736y In ²⁵²Cf SF decay and 106 ns *20* from fragment- γ (t) In ²³⁵U(n,F).

				248	Cm SF d	ecay	2010Si17 (contin	uued)			
γ (⁹³ Rb)											
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	Comments			
100.9 171.3 202.1 233.5	5 <i>I</i> 12 <i>I</i> 10 2	4423.0 3405.6 3234.3 4319.8	(27/2 ⁻) (19/2) (17/2)	4322.1 3234.3 3032.2 4086.3	(23/2 ⁻) (17/2)	[E2] D	0.940	Mult.: from $746\gamma - 171\gamma(\theta)$.			
372.3 381.0	72 7 5 1	1285.2 4322.1	(9/2 ⁺) (23/2 ⁻)	912.8 9941.0	(7/2 ⁻) (21/2 ⁺)	D D		Mult.: from 746 γ -372 $\gamma(\theta)$. Mult.: from 998 γ -381 $\gamma(\theta)$; this assumes that 998 γ is Q, ΔJ =2 analogous to γ of similar E In ⁹² Kr where structure is very similar to that of ⁹³ Rb.			
436.6 456.0 479.9 551.5 560.5 730.6	4 <i>I</i> 10 <i>I</i> 5 <i>I</i> 56 6 12 2 18 2	4322.1 3032.2 3885.5 1285.2 2576.3 2015.8	(23/2 ⁻) (9/2 ⁺)	3885.5 2576.3 3405.6 733.6 2015.8 1285.2	(19/2) (7/2 ⁻) (9/2 ⁺)	D		Mult.: from 746 γ -552 $\gamma(\theta)$.			
733.6 736.2 746.1 911.5 912.9 998.2	70 6 3 <i>l</i> 45 5 12 2 100 4 7 <i>l</i>	733.6 5159.2 2031.3 2942.8 912.8 3941.0	$(7/2^{-})$ (29/2,31/2) (13/2 ⁺) (17/2 ⁺) (7/2 ⁻) (21/2 ⁺)	0.0 4423.0 1285.2 2031.3 0.0 2942.8	$5/2^{-}$ $(27/2^{-})$ $(9/2^{+})$ $(13/2^{+})$ $5/2^{-}$ $(17/2^{+})$	Q		Mult.: from $\gamma\gamma(\theta)$.			
1143.5 1203.0 1285.2	4 <i>1</i> 14 2 33 6	4086.3 3234.3 1285.2	(17/2) (9/2 ⁺)	2942.8 2031.3 0.0	(17/2 ⁺) (13/2 ⁺) 5/2 ⁻	Q (M2)	0.000653 <i>10</i>	Mult.: from 746 γ -1203 $\gamma(\theta)$. α =0.000653 <i>10</i> ; $\alpha(K)$ =0.000575 <i>8</i> ; $\alpha(L)$ =6.20×10 ⁻⁵ <i>9</i> ; $\alpha(M)$ =1.024×10 ⁻⁵ <i>15</i> ; $\alpha(N+)$ =6.02×10 ⁻⁶ <i>9</i> $\alpha(N)$ =1.165×10 ⁻⁶ <i>17</i> ; $\alpha(O)$ =5.09×10 ⁻⁸ <i>8</i> ; $\alpha(IPF)$ =4.80×10 ⁻⁶ <i>7</i> Mult.: Q, Δ J=2 from 746 γ -1285 $\gamma(\theta)$; adopted $\Delta\pi$ =(yes).			

[†] From ²⁴⁸Cm SF decay.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

93 37Rb₅₆