Adopted Levels, Gammas 2000Sc31,2000WeZZ,1994He28

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 112,1163 (2011)	15-Dec-2010					

 $Q(\beta^{-}) = -1.29 \times 10^{4} \text{ syst}; S(n) = 1.21 \times 10^{4} \text{ syst}; S(p) = 3.4 \times 10^{3} \text{ syst}; Q(\alpha) = -3.5 \times 10^{3} \text{ syst}$ 2012Wa38

Note: Current evaluation has used the following Q record -12600 syst 12440 syst 3730 syst -3280 syst 2003Au03,2009AuZZ.

Q(β⁻), S(n), S(p), Q(α): from 2009AuZZ (cf. -12920 720 (syst.), 12270 640 (syst.), 3630 570, -2610 640 (syst.), respectively, from 2003Au03).

 ΔQ -=720, $\Delta S(n)$ =640, $\Delta S(p)$ =400, $\Delta Q(\alpha)$ =640 (2009AuZZ).

Q(*ε*-p)=7570 400 from systematics (2009AuZZ) (cf. 7420 590 from systematics (2003Au03)).

2008Ka30 deduce a mass excess of -59440 160 for 93 Pd (cf. -59700 400 from systematics in 2003Au03) based on an interpolation of S(2p) values for N=47 isotones and they estimate S(p)=3730 160 and S(2p)=5780 160. 2009AuZZ adopt mass excess of -59440 400 and S(p)=3730 400.

Production:

2000Sc31: ⁵⁸Ni(⁴⁰Ca, α n), E=188 MeV; enriched ⁵⁸Ni target, online mass separation; Si E- Δ E telescope, plastic scin and 12 Ge detectors; measured direct and ε -delayed protons, E γ , I γ , $\gamma\beta$ + coin and $\gamma\gamma\beta$ + coin; shell-model calculations.

2000WeZZ: ¹¹²Sn bombardment of Be, $E(^{112}Sn)=112$ GeV; fragment mass separation, time of flight for identification; four double-sided Si strip detectors, Si β detectors, segmented-clover Ge γ detector; measured $T_{1/2}$.

1994He28: Ni+¹⁰⁶Cd, E(¹⁰⁶Cd)=60 MeV/A; ⁹³Pd separated and identified using projectile fragment separator with 150 ns flight path; data also reported by 1995He39 and 1995Mo26.

Others: 1995Le08 (63 MeV/A ¹¹²Sn on Ni); 1976FaZW (⁶⁰Ni(⁴⁰Ca, a3n), E=147 MeV).

The adopted level scheme is based on the schemes deduced in 94 Ag p decay and in 58 Ni(40 Ca, $\alpha n\gamma$). The scheme proposed in 40 Ca(58 Ni, $\alpha n\gamma$) is less extensive, but includes all but the 516 γ in the cascade to the g.s. from the 7280 level; however, it reverses the order of the 984 γ -1096 γ cascade and reorders the 349 γ -167 γ -275 γ cascade.

93Pd Levels

Cross Reference (XREF) Flags

A 94 Ag p decay (0.39 s)

- 40 Ca(58 Ni, α n γ)
- C 58 Ni(40 Ca, α n γ)

В

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments				
0.0&	(9/2+)	1.00 [@] s 9	ABC	$%ε+%β^+=100; %εp=?$ J ^π : 7/2 ⁺ or 9/2 ⁺ based on shell-model calculations in (1g _{9/2} , 2p _{1/2}) model space (2000Sc31) and on systematics of J ^π (g.s.) in neighboring odd-N nuclides. 2001Xu05 favor 9/2 ⁺ based on statistical model calculation of proton branching to different final states in the ⁹² Ru εp decay daughter as a function of assumed J ^π (⁹³ Pd). Shell-model calculations by 2004Ru02 also favor a 9/2 ⁺ g.s.				
983.5 ^{&} 3	(13/2 ⁺)		ABC	E(level): a different value (1096) was proposed in (58 Ni, $\alpha n\gamma$); there, I(984 γ) and I(1096 γ) were too similar to define the cascade order and the 205 γ and 887 γ , now known from (40 Ca, $\alpha n\gamma$), were unobserved.				
1870.8 5	$(15/2^+)$		AC					
2079.3 ^{&} 5	$(17/2^+)$		ABC					
2232.2 5	$(17/2^+)$		AC					
2428.5 6	$(19/2^+)$		ABC					
2595.5 <mark>&</mark> 6	$(21/2^+)$		ABC					
2870.9 ^{&} 7	$(25/2^+)$		ABC					

Adopted Levels, Gammas 2000Sc31,2000WeZZ,1994He28 (continued)

⁹³Pd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3386.0? ^a 11	(25/2 ⁻ ,27/2 ⁻) [#]	A C	J^{π} : (D) 515 γ to (25/2 ⁺) 2871; probably feeds level of equal or lower J; member of sequence analogous to π =- yrast sequences in the ⁸⁹ Mo and ⁹¹ Ru N=47 isotones.
3735.1? ^a 11	(29/2 ⁻ ,31/2 ⁻) [#]	AC	
3863.2 ^{&} 8	$(29/2^+)$	ABC	
4138.7? ^a 11	(29/2 ⁻ ,31/2 ⁻) [#]	Α	
4752.7? ^a 15	(33/2 ⁻ ,35/2 ⁻) [#]	Α	
4995.6 <mark>&</mark> 9	$(33/2^+)$	ABC	
5649.0 ^{&} 10	$(37/2^+)$	BC	
6994.9 11	$(39/2^+)$	С	
7280.8 ^{&} 12	$(41/2^+)$	BC	
7662.9 ^{&} 12	$(45/2^+)$	C	

[†] From least-squares fit to adopted E_{γ} , assigning 1 keV uncertainty to E_{γ} data for which the authors did not state an uncertainty.

[‡] From ⁵⁸Ni(⁴⁰Ca, α n γ), except as noted, based on measured DCO ratios and on comparison of deduced structure with that for isotones ⁸⁷Zr, ⁸⁹Mo and ⁹¹Ru and with predictions from shell-model calculations performed in the restricted model space of g_{9/2} and p_{1/2} for proton and neutron holes (2004Ru02). These values assume $J^{\pi}(g.s.)=9/2^+$.

[#] Tentative π =- level sequence built on (25/2⁻,27/2⁻) 3386 level; proposed because observed proton branches with similar strength to 4994 and 4751 levels in ⁹⁴Ag p decay make it unlikely that the latter levels belong in the even-parity yrast sequence (2005Mu15).

[@] Unweighted average of 0.7 s +2–1 from ε -delayed proton decay and 1.0 s 3 from γ (t) for ε -delayed 240 γ (2000Sc31), 1.0 s 2 (2001Ki13), 1.3 s 2 (2001Xu05 and 2005Xu04) and 1.0 s +3–2; supported by T_{1/2}=0.9 s 6 and 0.9 s 4, respectively, for 382 γ and γ^{\pm} from 2000Sc31. The evaluator's assignment of this T_{1/2} to the ⁹³Pd g.s. is consistent with shell-model T_{1/2} predictions by 1997He24 (1.4 s). Note that T_{1/2}=9.3 s +25–17, tentatively assigned to ⁹³Pd by 2000WeZZ, appears to have been erroneous (see 2007WeZX). An E≈660–keV 1/2⁻ state is predicted also (2000Sc31) and this possibly may Be isomeric. Other T_{1/2}: 1976FaZW report a 60 s 20 proton activity in coincidence with x rays that suggest a ⁹³Pd precursor; this tentative assignment to ⁹³Pd remains unconfirmed and is probably not correct.

& Band(A): $\pi = (+) \Delta J = 2$ yrast sequence.

^{*a*} Band(B): π =(-) sequence. Based on (25/2⁻,27/2⁻) 3386 level; analogous to π =- yrast sequences in N=47 isotones ⁸⁹Mo and ⁹¹Ru.

 $\gamma(^{93}\text{Pd})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	Comments
983.5	$(13/2^+)$	983.5 <i>3</i>	100	0.0 (9/2+)	Q [#]	Other E γ :984.8 3 from (⁵⁸ Ni, α n γ).
1870.8	$(15/2^+)$	887.3 5	100	983.5 (13/2 ⁺)	(D) [#]	
2079.3	$(17/2^+)$	208.4 <i>3</i>	12.8 23	1870.8 (15/2 ⁺)		
		1095.7 5	100 10	983.5 (13/2 ⁺)	Q	Other Ey: 1097.4 3 from $({}^{58}\text{Ni},\alpha n\gamma)$.
2232.2	$(17/2^+)$	152.8 <i>3</i>	25 6	2079.3 (17/2 ⁺)		
		361.5 3	100 13	1870.8 (15/2+)	(D) [#]	
2428.5	(19/2+)	196.3 <i>3</i>	52 17	2232.2 (17/2 ⁺)	(D) [#]	I _γ : I(196γ)/I(349γ)=0.52 <i>17</i> from p-γ spectra gated on 1010-keV protons in ⁹⁴ Ag p decay. Other data: 1.0 <i>3</i> from p-γ spectra gated on 790-keV protons in ⁹⁴ Ag p decay; 0.18 <i>4</i> from (⁴⁰ Ca, αnγ).
		349.3 <i>3</i>	100 5	$2079.3 (17/2^+)$	(D) [#]	Other mult.: Q for doublet in ${}^{40}Ca({}^{58}Ni,\alpha n\gamma)$.
2595.5	$(21/2^+)$	167.0 <i>3</i>	100 7	2428.5 (19/2+)	D	
		516.3 5	58 16	2079.3 (17/2+)	(Q) [#]	
2870.9	$(25/2^+)$	275.4 3	100	2595.5 (21/2+)		Mult.: DCO in (⁴⁰ Ca, α n γ) suggests Q or D+Q but γ

Continued on next page (footnotes at end of table)

		Adopted Levels, Gammas			2000Sc31,2000	WeZZ,19	nued)	
E _i (level)	${f J}^\pi_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α [@]	Comments
								asymmetry in (⁵⁸ Ni, α n γ) is consistent with pure D. Possibly γ is a doublet, as suggested in ⁹⁴ Ag p decay (0.39 s).
3386.0?	(25/2 ⁻ ,27/2 ⁻)	514.5 ^{&} 10	100	2870.9	(25/2+)	(D) [#]		Mult.: possibly E1; connects $\pi=(+)$ and $\pi=(-)$ level sequences.
3735.1?	(29/2 ⁻ ,31/2 ⁻)	349.0 5	100	3386.0?	(25/2 ⁻ ,27/2 ⁻)			Mult.: (D) for doublet in ${}^{40}\text{Ca}({}^{58}\text{Ni},\alpha n\gamma)$.
3863.2	(29/2 ⁺)	992.4 4	100	2870.9	(25/2+)	Q		E_{γ} : from (⁵⁸ Ni,αnγ). Other E _γ : 991.2 7 from (⁴⁰ Ca,αnγ).
4138.7?	(29/2 ⁻ ,31/2 ⁻)	276 ^{&}		3863.2	(29/2 ⁺)	[E1]	0.00868 13	$ α(K)=0.00759 11; $ $ α(L)=0.000889 13; $ $ α(M)=0.0001662 24; $ $ α(N+)=2.78×10^{-5} $ $ α(N)=2.78×10^{-5} 4 $ E _γ : from ⁹⁴ Ag p decay (0.39 s). Mult.: possibly E1; connects $ π=(+) $ and $π=(-) $ level sequences. However, see comment on 275γ from 2871 level.
		403		3735.1?	(29/2 ⁻ ,31/2 ⁻)			E _{γ} : from ⁹⁴ Ag p decay (0.39 s).
4752.7?	(33/2 ⁻ ,35/2 ⁻)	614	100	4138.7?	(29/2 ⁻ ,31/2 ⁻)			E_{γ} : from ⁹⁴ Ag p decay (0.39 s).
4995.6	(33/2 ⁺)	1132.3 5	100	3863.2	(29/2 ⁺)	Q		Other E γ : 1133.9 4 in (⁵⁸ Ni, α n γ).

7280.8 (41/2⁺)

 $(33/2^+)$

Q

4995.6

Other Εγ: 1635.3 6 in (⁵⁸Ni,αnγ).

[†] From ⁵⁸Ni(⁴⁰Ca, α n γ), except as noted.

[‡] From γ asymmetry ratio in ⁴⁰Ca(⁵⁸Ni, α n γ), except as noted.

653.4 4

1346.0 5

286.0 5

1631.6 10

382.1 4

100

100

[#] From DCO ratio in 58 Ni(40 Ca, α n γ).

 $(37/2^+)$

 $(39/2^+)$

 $(41/2^+)$

 $(45/2^+)$

5649.0

6994.9

7280.8

7662.9

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

& Placement of transition in the level scheme is uncertain.

⁹³₄₆Pd₄₇-4

 $^{93}_{46}\text{Pd}_{47}$

Adopted Levels, Gammas 2000Sc31,2000WeZZ,1994He28

 $^{93}_{46}{\rm Pd}_{47}$