⁹³Mo ε decay (6.85 h) 2009Ho07,1977Me03

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 112, 1163 (2011)	15-Dec-2010				

Parent: ⁹³Mo: E=2424.864 2*I*; $J^{\pi}=21/2^+$; $T_{1/2}=6.85$ h 7; Q(ε)=406 4; % ε decay=0.1169 24 ⁹³Mo-% ε decay: See ⁹³Mo IT decay.

2009Ho07: 6.85 h ⁹³Mo obtained from 7.4 MeV/nucleon ⁸⁶Kr²¹⁺ bombardment of 99% enriched ¹³C target; fragment separator;

evaporation residues implanted In Pb foil; prompt γ -rays eliminated by 520 ns flight time; 14 HPGe detectors surrounding Pb foil (2 with BGO anti-Compton shields, 3 operated As low-energy photon spectrometers) At θ =30°, 52°, 90°, 128° and 150°; measured

 $E\gamma$, $I\gamma$, $\gamma\gamma$ coin (250 ns time Γ); jj-coupling shell model calculations.

1977Me03: thin Ge(Li) for E γ <400, Compton suppressed Ge(Li) spectrometers; measured E γ , I γ .

⁹³Nb Levels

E(level) [†]	J ^{π‡}
0	9/2+
949.82 [#] 3	$13/2^{+}$
1335.15 [#] 7	$17/2^{+}$
1491.08 [#] 7	$15/2^{+}$
2180.14 7	$(17/2)^{-}$
2752.93 7	$(19/2)^+$

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

[#] Band(A): $\pi g_{9/2}$ ($\nu d_{5/2}$)² states. Energies consistent with jj-coupling shell-model calculations by 2009Ho07.

ε radiations

E(decay)	E(level)	Ιε [†]	Log ft	Comments
(78 4)	2752.93	0.120 5	4.99 7	εK=0.806 5; εL=0.156 4; εM+=0.0375 11
(651 4)	2180.14	< 0.0015	>9.1 ¹	εK=0.8574 2; εL=0.1158 1; εM+=0.02675 3

[†] Absolute intensity per 100 decays.

 $\gamma(^{93}\text{Nb})$

Iy normalization: From $\Sigma(I(\gamma+ce)$ to g.s.)=100% (g.s. feeding negligible; $\Delta J=6$).

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ#	α ^{&}	Comments
155.94 <i>3</i>	0.0136 12	1491.08	15/2+	1335.15 1	17/2+	[M1,E2]		0.15 9	$\alpha(K)=0.13\ 7;\ \alpha(L)=0.018\ 12;\ \alpha(M)=0.0032\ 20;$ $\alpha(N+)=0.0005\ 3$ $\alpha(N)=0.0004\ 3;\ \alpha(Q)=1.9\times10^{-5}\ 10$
205 20 0	0.056.0	1005 15	17/0+	0.40.00 1	12/2+	Fa		0.01001	I_{γ} : weighted average of 0.010 <i>3</i> (1977Me03) and 0.014 <i>I</i> (2009Ho07).
385.30 8	0.056 2	1335.15	17/21	949.82 1	13/21	E2		0.01001	$\alpha(K)=0.008/3 \ I3; \ \alpha(L)=0.001063 \ I3; \ \alpha(M)=0.000188$ 3: $\alpha(N+)=2.84\times10^{-5} \ 4$
									$\alpha(N)=2.70\times10^{-5}$ 4; $\alpha(O)=1.397\times10^{-6}$ 20
									E_{γ} : unweighted average of 385.38 <i>9</i> (1977Me03) and 385.22 <i>2</i> (2009Ho07).
541.29 7	0.061 1	1491.08	$15/2^+$	949.82 1	13/2+	M1+E2	-0.104 17	0.00292 4	$\alpha = 0.00292 \ 4; \ \alpha(K) = 0.00258 \ 4; \ \alpha(L) = 0.000289 \ 4; \ \alpha(M) = 5.00 \times 10^{-5} \ 8; \ \alpha(N+1) = 7.00 \times 10^{-6} \ 1 \ M$
									$\alpha(M) = 5.09 \times 10^{-6} 0.00 \times 10^{-7} 0.00 \times 10^{-$
									E_{γ} : unweighted average of 541.22 7 (1977Me03) and 541.35 2 (2009Ho07).
572.796 19	0.056 2	2752.93	$(19/2)^+$	2180.14 ($(17/2)^{-}$				
689.053 <i>19</i> 844 96 6	0.040 I 0.015 I	2180.14 2180.14	(17/2) $(17/2)^{-}$	1491.08 I 1335.15 1	15/2 ' 17/2 +				other 1γ : 0.07 1 (1977Me03).
949.81 <i>3</i>	0.117 2	949.82	(17/2) $13/2^+$	0 9	$\frac{9}{2^+}$	E2		0.000812 12	$\alpha = 0.000812 \ I2; \ \alpha(K) = 0.000715 \ I0; \ \alpha(L) = 8.05 \times 10^{-5}$
									$\alpha(N)=2.07\times10^{-6} 3; \alpha(O)=1.182\times10^{-7} 17$
									%I ₇ =0.1169 24 assuming recommended decay scheme normalization.
1261.91 14	0.033 2	2752.93	$(19/2)^+$	1491.08 1	15/2+				E_{γ} , I_{γ} : from 2009Ho07; γ not reported by 1977Me03.
1417.75 <i>10</i>	0.031 2	2752.93	$(19/2)^+$	1335.15 1	17/2+				

 † Weighted average from from 2009Ho07 and 1977Me13, except As noted.

[‡] From 2009Ho07, except As noted. data from 1977Me03 are, typically, less precise but In excellent agreement.

[#] From Adopted Gammas.

 \mathbf{N}

^(a) For absolute intensity per 100 decays, multiply by 0.999 21. [&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁹³Mo ε decay (6.85 h) 2009Ho07,1977Me03

 $^{93}_{41}\rm{Nb}_{52}$

⁹³Mo ε decay (6.85 h) 2009Ho07,1977Me03

 $^{93}_{41}\rm{Nb}_{52}$