		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 112,1163 (2011)	15-Dec-2010

 $Q(\beta^{-}) = -406.7 \ 20; \ S(n) = 8830.6 \ 21; \ S(p) = 6042.3 \ 16; \ Q(\alpha) = -1928.8 \ 23 \ 2012Wa38$

Note: Current evaluation has used the following Q record -406 4 8831.0 20 6042.9 16–1931.0 22 2003Au03,2009AuZZ. Q(β^-), S(n), S(p), Q(α): from 2009AuZZ (cf. 405 4, 8831.3 20, 6043.4 16, -1931.4 23, respectively, from 2003Au03). Other Reactions:

¹⁷³Yb(²⁴Mg,Fγ), E=134.5 MeV (2010Fo10): observed 950γ following fission of ¹⁹⁷Pb compound nucleus.

⁸⁹Y(α, α) (2009Ki16): E α =16.21 and 19.47 MeV; measured $\sigma(\theta)$ in 1° to 2° steps from $\theta(lab)=20^{\circ}$ to 170°; deduced local optical model parameters; predicted (89Y $\otimes \alpha$) α cluster states in ⁹³Nb and calculated E2 reduced transition strengths within a $K^{\pi}=1/2^{-1}$ band based on the 31 level.

⁹³Nb(t,t) (2007Ch20):

E(t)=12 MeV; measured $\sigma(\theta)$; deduced optical-model parameters.

⁹³Nb(n,n') (1996De01, 1994De41):

E(n)=14.1 MeV. Analyzed $\sigma(E,\theta)$ data of Takahashi et al. (OKTAVIAN report A-92-01); calculated contributions from multistep direct, compound nucleus, multistep compound nucleus mechanisms, and collective excitations. ⁹³Nb(α, α') (1960Cr05):

 $E\alpha \approx 30$ MeV, θ (c.m.) $\approx 45^{\circ} - 85^{\circ}$; observed g.s. and E(level)=2400 300 (possibly complex); measured $\sigma(\theta)$.

⁹³Nb Levels

Cross Reference (XREF) Flags

Α	93 Mo ε decay (6.85 h)	J	90 Zr(α ,p γ)	S	⁹³ Nb IT decay (16.12 y)
В	92 Zr(α ,t)	K	⁹² Zr(p,p'), (pol p,p) IAR	Т	92 Zr(p, α) IAR
С	⁹³ Nb(p,p')	L	96 Mo(p, α)	U	89 Y(α ,n γ)
D	Coulomb excitation	Μ	80 Se(16 O,p2n γ)	V	92 Zr(16 O, 15 N)
Е	93 Nb(n,n' γ)	N	⁹³ Nb(d,d'), (pol d,d)	W	93 Nb(γ, γ'): E<2.75 MeV
F	93 Nb(γ,γ') E=6465 keV	0	93 Nb(γ ,xn)	Х	94 Zr(p,2n γ)
G	92 Zr(³ He,d)	Р	93 Zr β^{-} decay	Y	82 Se(16 O,p4n γ)
Н	94 Mo(d, ³ He)	Q	93 Nb(e,e')		
I	91 Zr(α ,d)	R	⁹³ Mo ε decay (4.0×10 ³ y)		

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	Х	REF		Comments
0.0	9/2+	stable	ABCDEFGHIJ	LMN PQRS	WXY	μ =+6.1705 3; Q=-0.32 2 J ^{π} : L(³ He,d)=4; J=9/2 from optical spectroscopy (1947Me27,1976Fu06). μ : from NMR and optical spectroscopy (1989Ra17); value relative to ⁴⁵ Sc and based on data of 1951Sh33 and 1947Me27.
30.77 2	1/2-	16.12 y <i>12</i>	E GH J 1	L PRS	X	Q: from hyperfine structure in muonic ⁷⁵ Nb (1989Ra17, from data of 1973Po15). Other: -0.366 <i>18</i> from atomic beam (without polarization correction) (1989Ra17). configuration: π g _{9/2} . $\Delta < r^2 > ({}^{91}gI\beta \text{ normalization}, {}^{93}Nb) = +0.312 2$ (2009Ch25) from LASER spectroscopy (optical pumping in ion beam cooler buncher); authors also report isotope shift and hfs coefficients. $< r^2 > {}^{1/2}(\text{charge}) = 4.3241 \ 15 \ (2004An14)$. %IT=100 J ^{\pi} : L=1 in ({}^{3}\text{He,d}); M4 \gamma to J^\pi = 9/2^+. configuration: (π 2p _{1/2}) ⁻¹ . T _{1/2} : from IT decay.

Continued on next page (footnotes at end of table)

⁹³Nb Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	XREF		Comments
686.79 [@] 10	3/2-	0.28 ps +48-14	BEGHJL	X	J^{π} : L=1 in (³ He,d); D+Q 656 γ to 1/2 ⁻ 31. T _{1/2} : from (α , $p\gamma$).
743.95 ^k 5	7/2+	0.51 ps 4	CDE J N	WX	J^{π} : M1+E2 744 γ to 9/2 ⁺ g.s.; not 9/2 or 11/2 from $\gamma(\theta)$ in Coulomb excitation. $T_{1/2}$: weighted average of 0.48 ps 5 from ⁹³ Nb(γ, γ'): E<2.75 MeV and 0.57 ps 7 from from Coulomb excitation. Other: >0.7 ps from ($\alpha, p\gamma$).
808.82 ^k 7	5/2+	6.16 ps 20	bcDE G iJ L	X	XREF: i(800). J^{π} : L=2 in (³ He,d); stretched E2 809 γ to $9/2^{+}$ g.s. Other T _{1/2} : >2.8 ps from (α ,p γ).
810.32 [@] 9	5/2-	>1.0 ps	bc E iJ L	X	XREF: i(800). J^{π} : L=3 component of L(p, α)=3+2 doublet; Q 780 γ to 1/2 ⁻ 31. $T_{1/2}$: from (α ,p γ); $T_{1/2}$ <14 ns from (n,n' γ).
949.80 ^k 3	13/2+	4.36 ps <i>15</i>	AbCDEF iJ LMn	WXY	XREF: i(960). J^{π} : 13/2 from Coulomb excitation; stretched E2 950 γ to 9/2 ⁺ g.s. Supported by L(p, α)=6. T _{1/2} : other values 2.3 ps 7 from (γ , γ'): E<2.75 MeV; possibly low as a result of unknown feeding effects in (γ , γ') (2007Or01). configuration: $\nu(d_{5/2}^2) \pi(g_{9/2})$ suggested by 2007Wa45 and 2009Ho07.
970? 10	1/2-,3/2-		G		J^{π} : L(³ He,d)=1.
978.91 ^k 5	11/2+	258 fs 18	bCDEF iJ n	WX	XREF: i(960). J^{π} : M1+E2 979 γ to 9/2 ⁺ g.s.; 11/2 from 979 $\gamma(\theta)$ in Coulomb excitation. $T_{1/2}$: weighted average of 0.236 ps 28, 0.256 ps 26, 0.31 ps 7 from DSAM in Coulomb excitation and 0.33 ps 6 from (γ,γ'): E<2.75 MeV. The unweighted average of these data is 283 fs 22. Other: 0.50 ps +24–13 from DSAM in (n,n' γ).
1082.68 ^k 5	9/2+	>2.8 ps	BCDEFG JLN	X	J ^π : L=4 in (³ He,d); J=9/2 from γ(θ) in Coulomb excitation; J=9/2,13/2 from (γ,γ') E=6465 keV. T _{1/2} : >2.8 ps from DSAM in Coulomb excitation. Other T _{1/2} : <14 ns and >0.86 ps from (n,n'γ). T _{1/2} =3.5 ps 5 from measured B(E2) and adopted branching if δ (1082γ)=-2.47 (uncertainty unstated) from 2002Ka05 in Coulomb excitation is correct.
1127.09 ^h 12	3/2,5/2,7/2		ЕЈ	X	J ^{π} : D+Q 318 γ to 5/2 ⁺ 809; J \leq 7/2 from (α ,p γ). (5/2 ⁻) (1992De08) and 5/2 ⁺ ,(7/2 ⁺) (1982Av05) from statistical analysis in (n,n' γ) favor J=5/2.
1284.26 ^{<i>i</i>} 13	(5/2)-	0.17 ^d ps +6-4	Ε	Х	J ^{π} : M1+E2 597 γ to 3/2 ⁻ 687; 1254 γ to 1/2 ⁻ 31 is not M2 from RUL; candidate for 5/2 ⁻ member of 2-phonon isoscalar quintet (2010Or01). However, (1/2 ⁺) from statistical analysis in (n,n' γ).

Continued on next page (footnotes at end of table)

⁹³Nb Levels (continued)

1290 12 $1/2^{-3}/3^{-7}$ bc GHi L XREF: H(1320)(L129), Additional information 1. 1297.22 ^j 6 9/2* 0.21 ps 3 bcDEF i XX F: D 318 y to 11/2* 979; D(+Q) 553 y to 7/2* 744; M1+E2 1297 y to 9/2 in 7/2* 744; M1+E2 507 y to 5/2* 809; F: 7/2* form c/00 ind (x), 0.21 ps + 3/-1/2 c E G i N X RREF: (G1320)(1130), F: D+ 0572 y in 7/2* form c/0 in (x), 0.21 ps + 3/-1/2 form y 5/2* 809; F: 7/2* form c/0 in (x), 0.21 ps + 3/-1/2 1315.50 ^j 11 5/2* 0.37 ^d ps + 3/-1/2 c E G i N X RREF: (G1320)(1130), F: D+ 0572 y in 7/2* form c/0 in (x), 0.21 ps + 3/-1/2 form y/3/2* 807; F: 7/2* form c/0 in (x), 0.21 ps + 3/-1/2 1315.50 ^j 11 5/2* 0.37 ^d ps + 3/-1/2 c E G i N X RREF: (G1320)(1130), F: D+ 0572 y in 7/2* form c/0 in (x), 0.21 ps + 3/-1/2 1315.50 ^j 11 5/2* 0.37 ^d ps + 3/-1/2 c E G i N X REF: (G1320)(1120) D+ 1/2* form form coscin and J*=7/2* form form institution (x, a)/2* 000; D+ 1/2* form form institution (x, a)/2* 0000 D+ 0/2* ps + 0/2* 0/2* 0/2* 0/2* 0/2* 0/2* 0/2* 0/2*	E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡				XREF		Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1290 12	1/2-,3/2-		bc	Gŀ	łi	L		XREF: H(1320)L(1279). Additional information 1. J^{π} : L=1 in (³ He,d) and (p, α).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1297.22 ^j 6	9/2+	0.21 ps 3	bc	DEF	i		WX	J ^π : D 318γ to 11/2 ⁺ 979; D(+Q) 553γ to 7/2 ⁺ 744; M1+E2 1297γ to 9/2 ⁺ g.s. T _{1/2} : from (γ,γ'): E<2.75 MeV. Others: 0.26 ps +8-5 from (n,n'γ), 0.21 ps +21-7 from Coulomb excitation (DSAM).
1335.04 ^h 4 17/2 ⁺ <14 ns	1315.50 ^j 11	5/2+	0.37 ^d ps +31-12	С	E G	i	Ν	x	XREF: G(1330)i(1330). J^{π} : D+Q 572 γ to 7/2 ⁺ 744; M1+E2 507 γ to 5/2 ⁺ 809; J=5/2 from $\gamma(\theta)$ (1982Av05) in (n,n' γ). Supported by L(³ He,d)=(2) for E=1330 <i>10</i> level. However, π =- from excit and J^{π} =7/2 ⁻ from statistical analysis by 1992De08 in (n,n' γ).
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1335.04 ^h 4	17/2+	<14 ns	A	E		М	ХҮ	J ^π : stretched E2 385γ to $13/2^+$ 950; J=17/2 from γ(θ) in (n,n'γ). configuration: $v(d_{5/2}^2) \pi(g_{9/2})$ suggested by 2007Wa45 and 2009Ho07.
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1369.86 <i>17</i>	5/2-	>0.55 ^{<i>d</i>} ps	b	Eł	1	L	X	XREF: h(1320). J^{π} : L(p, α)=3; D+Q 683 γ to 3/2 ⁻ 687; D+Q 559 γ to 5/2 ⁻ 810. This is probably the L=(3) component of the L=(1+3), E=1320 40 doublet in (d, ³ He). However, J^{π} =(3/2 ⁺) from statistical analysis in (n,n' γ).
1455.0 8 $(1/2^{-}, 3/2^{-})^{o^{2}}$ Ei1483.58 j 7 $7/2^{(+)}$ 45.7 fs 24EFiIWXXREF: i(1480). J^{\pi}: D+Q 1483 y to 9/2^{+} g.s.; D+Q 675 y to 5/2^{+} 808; $\pi = (+)$ from statistical analysis in $(n, n' \gamma)$. $T_{1/2}:$ weighted average of 47 fs 4 from (γ, γ') : E<2.75 MeV and 45 fs 3 from $(n, n' \gamma)$.1490.99 h 515/2^{+}<14 ns	1395.42 ^{<i>i</i>} 13	(7/2 ⁻)	>0.55 ^d ps		Е			x	J ^{π} : D+Q 585 γ to 5/2 ⁻ 810; 708 γ to 3/2 ⁻ 687; candidate for 7/2 ⁻ member of quintet of 2-phonon isoscalar excitations (2010Or01). However, in (n,n' γ), $\gamma(\theta)$ favors 5/2 and statistical analysis suggests (7/2 ⁺).
$1483.36^{j} f = 1/2^{2-j} = 43.7 \text{ is } 24 \qquad \text{EF i i i} \qquad \text{way a XREF. (1440).} $ $J^{\pi}: D+Q \ 1483 y \ 0 \ 9/2^{+} \ g.s.; D+Q \ 675 \gamma \\ \text{ to } 5/2^{+} \ 808; \ \pi=(+) \ \text{from statistical} \\ \text{ analysis in } (n, \eta' \gamma). \\ \text{T}_{1/2}: \ \text{weighted average of } 47 \ \text{fs } 4 \ \text{from} \\ (\gamma, \gamma'): \ E<2.75 \ \text{MeV} \ \text{and } 45 \ \text{fs } 3 \ \text{from} \\ (n, n' \gamma). \\ \text{T}_{1/2}: \ \text{weighted average of } 47 \ \text{fs } 4 \ \text{from} \\ (\gamma, \gamma'): \ E<2.75 \ \text{MeV} \ \text{and } 45 \ \text{fs } 3 \ \text{from} \\ (n, n' \gamma). \\ \text{T}_{1/2}: \ \text{weighted average of } 47 \ \text{fs } 4 \ \text{from} \\ (\gamma, \gamma'): \ E<2.75 \ \text{MeV} \ \text{and } 45 \ \text{fs } 3 \ \text{from} \\ (n, n' \gamma). \\ \text{T}_{1/2}: \ \text{weighted average of } 47 \ \text{fs } 4 \ \text{from} \\ (n, n' \gamma). \\ \text{T}_{1/2}: \ \text{weighted average of } 47 \ \text{fs } 4 \ \text{from} \\ (n, n' \gamma). \\ \text{T}_{1/2}: \ \text{weighted average of } 47 \ \text{fs } 4 \ \text{from} \\ (n, n' \gamma). \\ \text{T}_{1/2}: \ \text{weighted average of } 47 \ \text{fs } 4 \ \text{from} \\ (n, n' \gamma). \\ \text{T}_{1/2}: \ \text{weighted average of } 47 \ \text{fs } 4 \ \text{from} \\ (n, n' \gamma). \\ \text{T}_{1/2}: \ \text{weighted average of } 47 \ \text{fs } 4 \ \text{from} \\ (n, n' \gamma). \\ \text{T}_{1/2}: \ \text{weighted average of } 47 \ \text{fs } 4 \ \text{from} \\ (n, n' \gamma). \\ \text{T}_{1/2}: \ \text{to } 13/2^{+} \ 950; \ 156 \gamma \ \text{to} \\ 17/2^{+} \ 1335; \ J=15/2 \ \text{from} \ \gamma(\theta) \ \text{in} \\ (n, n' \gamma); \ \gamma \ \text{from } 11/2^{(+)}. \ \text{Some statistical} \\ \text{analyses in } (n, n' \gamma) \ \text{give conflicting} \\ \text{assignments } (9/2^{+} \ \text{or } 17/2^{+}). \\ \text{configuration: } \gamma(d_{5/2}^{2}) \ \pi(g_{9/2}) \ \text{suggested} \\ \text{by } 2009 \text{HoO7}. \\ \text{Other } T_{1/2}: > 0.52 \ \text{ps from } (n, n' \gamma). \\ \text{T}_{1499.94^{i} \ 6 \ (9/2^{-}) = 0.84 \ \text{ps } 22 \qquad \text{E i N} \text{WX} \text{XREF: i(1480).} \\ \end{array}$	1455.0 8 1493 58 j 7	$(1/2^+, 3/2^+)^0$ $7/2^{(+)}$	45 7 fg 24		E	1	1	шv	VDEE: :(1490)
1490.99 $h = 5$ $15/2^+$ <14 ns $A = EF$ $i = 1$ XY XREF: $i(1480)$. J^{π} : $M1+E2$ 541γ to $13/2^+$ 950 ; 156γ to $17/2^+$ J^{π} : $M1+E2$ 541γ to $13/2^+$ 950 ; 156γ to $17/2^+$ 1335 ; $J=15/2$ from $\gamma(\theta)$ in $(n,n'\gamma)$; γ from $11/2^{(+)}$. Some statistical analyses in $(n,n'\gamma)$ give conflicting assignments $(9/2^+$ or $17/2^+)$. configuration: $v(d_{5/2}^2) \pi(g_{9/2})$ suggested by 2009Ho07. Other $T_{1/2}$: >0.52 ps from $(n,n'\gamma)$.1499.94 $i = 6$ $(9/2^-)$ 0.84 ps 22 E $i = N$ WXXREF: $i(1480)$.	1403.364 /	1/2×*	45.7 18 24		Er	T	1	WA	The function of the function
1499.94 ^{<i>i</i>} 6 (9/2 ⁻) 0.84 ps 22 E i N WX XREF: i(1480).	1490.99 ^h 5	15/2+	<14 ns	A	EF	i	1	XY	XREF: i(1480). J^{π} : M1+E2 541 γ to 13/2 ⁺ 950; 156 γ to $17/2^{+}$ 1335; J=15/2 from $\gamma(\theta)$ in (n,n' γ); γ from 11/2 ⁽⁺⁾ . Some statistical analyses in (n,n' γ) give conflicting assignments (9/2 ⁺ or 17/2 ⁺). configuration: $\nu(d_{5/2}^2) \pi(g_{9/2})$ suggested by 2009Ho07. Other Theorem (0.52 ps from (n,n' γ)
	1499.94 ⁱ 6	(9/2-)	0.84 ps 22		E	i	N	WX	XREF: i(1480).

⁹³Nb Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡			XREF		Comments
							$J^{\pi}: D,E2 690γ to 5/2- 810, D(+Q) 1500γto 9/2+ g.s., 521γ to 11/2+ 980 implyJπ=(7/2+,9/2-); candidate for 9/2- memberof 2-phonon isoscalar-excitation quintet(2010Or01). However, J=7/2 deduced from1500γ(θ) by 1982Av02 in (n,n'γ).T1/2: from (γ,γ'): E<2.75 MeV. Other:>0.96 ps from DSAM in (n,n'γ).$
1571.82 ^{<i>i</i>} 14	3/2-	0.19 ^d ps +15-7	В	EG	L	X	Additional information 2. J^{π} : L=1 in (³ He,d); M1+E2 761 γ to 5/2 ⁻ 810.
1588.06 ^h 17	$3/2^{(-)}, 5/2^{(-)}$	>0.87 ^{<i>d</i>} ps		Е		X	J^{π} : D+Q 778 γ to 5/2 ⁻ 810; D+Q 901 γ to 3/2 ⁻ 687: large δ (778 γ) favors π
1603.24? <i>16</i>	(9/2 ⁻)			Ε			J^{π} : 859y to 7/2 ⁺ 744; 625y to $11/2^+$ 979; (7/2 ⁻ ,9/2 ⁻) from statistical analysis in (n,n' γ). Possibly the same level as that adopted at 1603.8 keV even though J^{π} from (n,n' γ) differs.
1603.44 ^j 9	11/2+	0.32 ps +17-9		E		X	J ^{π} : D(+Q) 521 γ to 9/2 ⁺ 1083; M1+E2 654 γ to 13/2 ⁺ 949; D,E2 860 γ to 7/2 ⁺ 744. J=11/2,13/2 from statistical analysis in (n,n' γ).
1665.66 ^h 12	5/2+	0.24^{d} ps +7-5	b	E G i	1 n	х	XREF: i(1660).
							J^{A} : L=2 in (³ He,d); M1+E2 921 γ to $1/2^{3}$ 744.
1679.50 ^h 10	5/2 ⁽⁺⁾ ,7/2	0.22 ^d ps +6-4	b	Ef i	l n	X	XREF: i(1660). J^{π} : D+Q 364 γ to 5/2 ⁺ 1315; D(+Q) 936 γ to 7/2 ⁺ 744; 1680 γ to 9/2 ⁺ g.s. However, 9/2 ⁺ ,11/2 ⁺ (1992De08) and (5/2,7/2) (1973Va09) from statistical analysis in (n,n' γ).
1683.36 8	9/2+	104 ^d fs +17-14	b	Ef i	1 n	X	XREF: i(1660). J^{π} : M1+E2 704 γ to 11/2 ⁺ 979; M1+E2 939 γ to 7/2 ⁺ 744. 9/2 ⁺ from 939 γ and 1682 γ excit in (n,n' γ); 5/2 ⁺ from excit for 704 γ to 11/2 ⁺ in (n,n' γ) is disregarded by evaluator because 704 γ is complex.
1686.34 9	13/2+	0.17 ^d ps +4-3	b	Ef i		X	XREF: i(1660). J^{π} : M1+E2 707 γ to 11/2 ⁺ 980; D+Q 737 γ to 13/2 ⁺ 950; D,E2 1686 γ to 9/2 ⁺ g.s.; J=13/2 from $\gamma(\theta)$ in (n,n' γ).
1694.0?	2/2+ 5/2+	0.15^{d} m $+ 10.6$		E	n	v	VDEE: C(1710)
1705.51 10	JL, JL	0.15 ps +19-0		EG		Λ	J^{π} : D+Q 895 γ to 5/2 ⁺ 809; L(³ He,d)=2 for E(level)=1710 <i>10</i> .
1772.96 ^h 17	(≤7/2)	87 ^d fs +14-10		Ε	1	Х	J ^{π} : D,E2 964 γ to 5/2 ⁺ 809 and possible 318 γ to (1/2 ⁺ ,3/2 ⁺) 1454 level imply J^{π} =(1/2 ⁺ ,3/2,5/2,7/2 ⁺); (5/2 ⁺) favored by statistical model analysis in (n,n' γ). If J^{π} =(1/2 ⁺) and D,E2 646 γ is correctly placed, J(1127)=7/2, as proposed in (p,2n γ), is very improbable.

⁹³Nb Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡		XREF		Comments
1779.27 [#] 17	(5/2 ⁻)	73 fs +30-19	E	1	X	J^{π} : D(+Q) gammas to 3/2 ⁻ 687 and 5/2 ⁻ 810 so J=3/2,5/2; (5/2 ⁻) favored by statistical model analysis in (n,n' γ); large B(M1)(W.u.) and small B(E2)(W.u.) for 969 γ to 5/2 ⁻ one-phonon 810 level support proposed structure. T _{1/2} : from DSAM in (n,n' γ).
1784.40 25	$(5/2^+)^{b}$		Е	1		
1812.34 <i>21</i>	(19/2)	104^{d} fs +35–24	E		X	J ^{π} : 477 γ to 17/2 ⁺ ; (19/2 ⁻) from statistical analysis in (n,n' γ). (19/2 ⁺) proposed in (p,2n γ), but justification is unclear.
1840.07 [#] <i>17</i>	3/2 ⁻ ,5/2 ⁻	71 fs +24-17	Ε		Х	J ^{π} : M1+E2 1153 γ to 3/2 ⁻ 687; D+Q 1030 γ to 5/2 ⁻ 810. Large B(M1)(W.u.) for 1153 γ to the 3/2 ⁻ 687 one-phonon state along with level's proximity to the 5/2 ⁻ 1780 mixed-symmetry level may favor a J=3/2 assignment (2006Or09).
1908.1 <i>11</i>	(5/2)		сE			J^{π} : 5/2 ⁻ from statistical analysis in (n,n' γ), but 1908 γ to 9/2 ⁺ g.s. favors π =+.
1910.68 ^g 7	7/2+,9/2+,11/2+	162 fs <i>13</i>	сE		WX	J ^{π} : M1+E2 1911 γ to 9/2 ⁺ g.s. From statistical analysis in (n,n' γ), J ^{π} =(7/2 ⁺ ,9/2 ⁺) (1992De08), 7/2 ⁺ (1982Av05). T _{1/2} : weighted average of 168 fs <i>14</i> from ($\gamma \gamma'$): E<2 75 MeV and 139 fs
						$+28-21$ from $(n,n'\gamma)$.
1915.92 ^g 10	7/2	62 ^{<i>d</i>} fs 7	E		X	J ^{π} : D+Q 600 γ to 5/2 ⁺ 1315; D(+Q) 833 γ to 9/2 ⁺ 1083. However, (9/2 ⁻) from statistical analysis in (n,n' γ).
1947.73 22	3/2,5/2,7/2	0.16 ^d ps +9–5	сE	n	X	J ^π : D(+Q) 1138γ to $5/2^{-}$ 810. Statistical analysis in (n,n'γ) favors $(3/2^{+},5/2^{+})$ (1992De08), but 2010Or01 in (p,2nγ) suggest $7/2^{(-)}$.
1949.72 ^{ch} 10	(7/2 ⁺)	0.5^d ps +11-2	сE	n	X	J ^{π} : D+Q 1141 γ to 5/2 ⁺ 808; 971 γ to 11/2 ⁺ 980. However, 9/2 ⁺ (1992De08) from statistical analysis in (n,n' γ).
1949.81 ^{<i>c</i>} 13	(11/2)	0.6 ^d ps +26-3	EF	n	х	J ^{π} : 1950 γ to 9/2 ⁺ g.s. and 346 γ to 11/2 ⁺ 1604 in (p,2n γ) favor J ^{π} =(7/2 ⁺ ,9/2,11/2,13/2 ⁺); J=11/2 for E=1951 <i>3</i> level from $\gamma(\theta)$ for D 4514 γ from 11/2 ⁽⁺⁾ in (γ,γ') E=6465 keV. However, (5/2 ⁻) (1992De08) from statistical analysis (poor fit) in (n n' γ)
1968.27 ^c 17	(13/2 ⁻)		E		WX	J^{π} : 477 γ to 15/2 ⁺ 1491, 365 γ to 11/2 ⁺ 1603 imply J^{π} =(11/2 ⁺ ,13/2,15/2 ⁺); (11/2 ⁻ ,13/2 ⁻) from statistical analysis in (n,n' γ).
1968.87 ^{ch} 5	11/2+	111 fs <i>19</i>	Е	n	WX	J ^π : M1+E2 1019γ to 13/2 ⁺ 949; Δ J≤2

Continued on next page (footnotes at end of table)

⁹³Nb Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡			XREF		Comments
							1225γ to 7/2 ⁺ 743. However, (11/2 ⁻ ,13/2 ⁻) from statistical analysis in (n,n'γ). $T_{1/2}$: from (γ,γ'): E<2.75 MeV.
1997.12 <i>17</i>	3/2-,5/2-	64 ^d fs +15-12		E		X	Other: 111 IS $+24-21$ from (n,n' γ). J ^{π} : M1+E2 1187 γ to 5/2 ⁻ 810; D+Q 1310 γ to 3/2 ⁻ 687:
2002.52 ^h 10	(11/2 ⁺)	>0.55 ^d ps	В	E		X	J ^{π} : (M1+E2) 1053 γ to 13/2 ⁺ 949; 502 γ to 9/2 ⁻ . However, J=15/2 (1982Av05) from $\gamma(\theta)$ in (n,n' γ), and statistical analyses in (n,n' γ)
2012.41 18	(≤5/2) [−]	21 fs +20-8				X	J^{π} : M1+E2 1326 γ to 3/2 ⁻ 687. T _{1/2} : from DSAM in (n,n' γ) (2005Mc13).
2019.7 4	(7/2 ⁻ ,9/2 ⁻) ^b			E			
2023.91 ^h 18 2037.2 3	$(\leq 5/2)^-$ $(9/2^+, 11/2^+)$	54 ^d fs +28-17		E		X	$J^{\pi}: M1+E2 \ 1337\gamma \text{ to } 3/2^{-} \ 687.$ $J^{\pi}: \ 1087\gamma \text{ to } 13/2^{+} \ 950; \ 537\gamma \text{ to } (9/2^{-}) \ 1500; \ (9/2^{+}, 11/2^{+}) $ (1992De08) from statistical analysis in (n,n' γ).
2099.23 17	(3/2 ⁻ ,5/2,7/2)	92 ^d fs +43-25		Ε	1	X	J^{π} : D(+Q) 1289γ to 5/2 ⁻ 811; 704γ to (7/2 ⁻) 1396. However, J^{π} =(3/2 ⁺) from statistical analysis in (n,n'γ).
2122.67 ^h 6	9/2+	97 fs 16		E		WX	J^{π} : M1+E2 1379 γ to 7/2 ⁺ 744; M1+E2 1144 γ to 11/2 ⁺ 979. T _{1/2} : weighted average of 113 fs 21 from (γ , γ'): E<2.75 MeV and 80 fs +21-14 from (n,n' γ) (2007Or01).
2126.89 12	(5/2 ⁻ ,7/2,9/2 ⁻)	0.16 ^d ps +12-8		E		х	J ^{π} : 627 γ to (9/2 ⁻) 1500; 1317 γ to 5/2 ⁻ 811.
2132.6 5	(≥7/2)		b	Е	1		J^{π} : 1154 γ to 11/2 ⁺ 980. (5/2 ⁺ ,7/2 ⁺) from excit in (n,n' γ), but based on only two data points so may not be reliable.
2153.60 20	$(1/2,3/2,5/2^{-})^{b}$	80 ^d fs +19–14	b	E		X	J^{π} : 2123 γ to 1/2- 31-keV level. (3/2 ⁺) from statistical analysis in (n,n' γ).
2162.64 ^{<i>h</i>} 12	(11/2 ⁺ ,13/2,15/2 ⁺)	0.28 ^d ps +21-9	b	Ε	n	X	J^{π} : 1184 γ to 11/2 ⁺ 980; 672 γ to 15/2 ⁺ 1491. However, $J^{\pi}=(9/2^+)$ from statistical analysis (1992De08) and (17/2 ⁺) from excit (1973Va09) in (n,n' γ).
2170.65 ^h 10	9/2+	0.24 ^{<i>d</i>} ps +11-6	b	Ε		X	J ^{π} : D,E2 1361 γ to 5/2 ⁺ 809; D,E2 1222 γ to 13/2 ⁺ 950. However, J ^{π} =(13/2 ⁺) from statistical analysis (1992De08) and (15/2 ⁺) from excit in (n,n' γ).
2180 <i>10</i> 2180.04 <i>5</i>	3/2 ⁺ ,5/2 ⁺ (17/2) ⁻		A	G	n	Y	J^{π} : L=2 in (³ He,d). J^{π} : E1 689 γ to 15/2 ⁺ 1491; 573 γ from (19/2 ⁺) 2753; consistent with log $f^{1u}t>8.5$ from 21/2 ⁺ . However,

⁹³Nb Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡		XF	REF		Comments
							statistical analysis of a 689 γ , whose second placement in (n,n' γ) is from a 2180 level, indicates $J^{\pi} = (7/2^+)$; if correct, a separate level must exist at approximately this energy, but evaluator does not adopt it for lack of supporting evidence. configuration: $v(g_{9/2})^2 \pi(p_{1/2})^{-1}$ suggested by
2184.14 21		76 ^d ps +31-21	Е			X	200/Wa45 and $2009Ho0/$. J ^{π} : 849 γ to 17/2 ⁺ 1335 so J=(13/2 to 21/2).
2203.5 3	(9/2+)		E				J^{π} =19/2 ⁺ is proposed in (p,2n γ). J^{π} : 600 γ to 11/2 ⁺ 1603, 808 γ to (7/2 ⁻) 1395 imply J^{π} =(7/2 ⁺ ,9/2,11/2 ⁻); (9/2 ⁺) from statistical analysis in (n,n' γ).
2250			С				
2280.7 7	(7/2 ⁻) ^b		CE				
2310.9 9 2320 <i>10</i> 2330.0 5	3/2+,5/2+		b G b E			Y	$J^{\alpha}: 9'/6\gamma$ to $1'/2^+$ 1335. $J^{\pi}: L=2$ in (³ He,d). $I^{\pi}: 1351\gamma$ to $11/2^+$ 980.
2367.5 10	9/2,13/2 ⁽⁺⁾		Bc EF				J^{π} : 9/2, 13/2 from 4095 $\gamma(\theta)$ from 11/2 ⁽⁺⁾ 6465
2506.88 8		66 fs +21-14				WX	in (γ, γ') E=6465 keV; 2367 γ to 9/2 ⁺ g.s. J^{π} : 2507 γ to 9/2 ⁺ g.s., 1528 γ to 11/2 ⁺ 979, so J^{π} =(7/2 ⁺ ,9/2,11/2,13/2 ⁺). 9/2 ⁺ proposed in
2520 10	$(1/2^+)$		Bc G		N		(p,2n γ) but justification is unclear. T _{1/2} : from DSAM in (n,n' γ). Additional information 3.
2594 2 7	2/2+ 5/2+						J^{π} : L=(0) in (³ He,d).
2584.2 7 2752.84 5	$(19/2)^+$		A				J [*] : L=2 in (*He,d). J ^{π} : log ft =5.0 from 21/2 ⁺ 2833; 1262 γ to 15/2 ⁺ 1491; 1418 γ to 17/2 ⁺ 1335.
							configuration: $\nu(d_{5/2})(g_{7/2}) \pi(g_{9/2})$ suggested by 2009Ho07
2832.8 9	21/2+			1	М	Y	J^{π} : stretched E2 1498 γ to 17/2 ⁺ 1335. configuration: $v(d_{5/2})(g_{7/2}) \pi(g_{9/2})$ suggested by 2007Wa45
2838 4	11/2		Bc F		N		XREF: B(2810).
2980 20			Bc				J^{n} : from 3626 $\gamma(\theta)$ in (γ, γ') E=6465 keV.
3086.0 10	(21/2) ^f					Y	J ^{π} : stretched Q 906 γ to (17/2) ⁻ 2180. configuration: $v(d_{5/2})^2 \pi(g_{9/2})^2(p_{1/2})_1$ suggested by 2007Wa45
3150 20			BC				XREF: C(3050).
3512 17			В	I			Additional information 4.
3667.8 13	(25/2)					Y	$J^*: 835\gamma$ to $21/2^+ 2833$.
30/4.0 13	(23/2)					ĭ	J^{-1} : 5887 to (21/2) 5086. configuration: $\nu(d_{5/2})^2 \pi(g_{9/2})^2(p_{1/2})_1$ suggested by 2007Wa45.
3684.8 12			_			Y	J^{π} : 852 γ to 21/2 ⁺ 2833.
3720 30 3840 17 3930 30			B B	I I			Additional information 5.
4060 30	25/2(+)			Ι,	м	v	I^{π} : stratched O 12724 to 21/2 ⁺ 2022
4104./ 12	23 Z [×] /			1	ri	ĭ	s used of $Q = 2727$ to $21/2^{-7} = 2855$. configuration: $v(d_{5/2})^2 \pi (g_{9/2})^3$ suggested by 2007Wa45.
4224 17			В	I			Additional information 6.

Continued on next page (footnotes at end of table)

⁹³Nb Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡			XREF		Comments
4340 20			В				
4403.0 18	(29/2) ^f					Y	J ^{π} : 729 γ to (25/2) 3674. configuration: $\nu(d_{5/2})(g_{7/2}) \pi(g_{9/2})(p_{1/2})^{-1}$ suggested by 2007Wa45.
4460 20 4548 17 4650? 20 4700 30			B B B B	1	[Additional information 7.
4810 <i>30</i> 4864.6 <i>16</i>	29/2 ⁽⁺⁾		В		М	Y	E(level): alternative E=5144 if order of 1040 γ and 760 γ is reversed as suggested by authors in (¹⁶ O,p2n γ). J ^{π} : stretched E2 760 γ to 25/2 ⁽⁺⁾ 4105. configuration: ν (d _{5/2}) ² π (g _{9/2}) ³ suggested by 2007Wa45.
5000 <i>30</i> 5155.1 <i>18</i> 5340 <i>40</i>			B			Y	J ^{π} : 1481 γ to (25/2) 3674.
5490 40			В				-
5904.3 <i>19</i>	33/2(+)				М	Y	J ^{π} : stretched E2 1040 γ to 29/2 ⁽⁺⁾ 4865. configuration: $\nu(d_{5/2})(g_{7/2}) \pi(g_{9/2})^3$ suggested by 2007Wa45.
6464.3 10	11/2 ⁽⁺⁾			F			
7372.3 21	$(35/2^{-})^{f}$					Y	J^{π} : D+Q 1468 γ to 33/2 ⁽⁺⁾ 5905.
7435.3 ^e 21	$37/2^{(-)}f$					Y	J^{π} : Q 1531 γ to 33/2 ⁽⁺⁾ 5905; stretch-coupled
							configuration of $v(d_{5/2})(h_{11/2}) \pi(g_{9/2})^3$ suggested by 2007Wa45, and their deformed independent particle model calculations predict $\beta = -0.14$.
7828.3 ^e 23	$39/2^{(-)}f$					Y	J^{π} : M1 393 γ to 37/2 ⁽⁻⁾ 7436.
8325.4 ^e 25	$41/2^{(-)}f$					Y	J ^{π} : D 497 γ to 39/2 ⁽⁻⁾ 7829; π from band assignment.
8377.4 21	(37/2) ^f					Y	J ^π : D+Q 942γ to 37/2 ⁽⁻⁾ 7436; D 1005γ to (35/2 ⁻) 7373.
8940 ^e 3	$(43/2^{-})^{f}$					Y	J^{π} : M1 615 γ to 41/2 ⁽⁻⁾ 8326.
9134.4 22	$(41/2^{-})^{f}$					Y	J^{π} : (E2) 1699 γ to 37/2 ⁽⁻⁾ 7435.
9425 <i>3</i>	$(45/2^+)^{f}$					Y	J^{π} : E1 485 γ to (43/2 ⁻) 8940.
9699.4 22	(39/2-,41/2-)					Y	J ^{π} : 223 γ from (43/2 ⁻) 9922; 2264 γ to 37/2 ⁽⁻⁾ 7435.
9782.4? <i>23</i>	c					Y	J^{π} : 1405 γ to (37/2) 8377.
9922.4 23	$(43/2^{-})^{f}$					Y	J ^{π} : M1 788 γ to (41/2 ⁻) 9134.
10955.4 25						Y	J^{n} : 1033 γ to (43/2 ⁻) 9923.
7435.3+x		1.5 μs 5				Ŷ	$T_{1/2}$: from delayed coin in (¹⁰ O,p4n γ); interpreted by 2007Wa45 as a high-spin shape isomer.
11059	5/2+	13 ^{&} keV 5		G	K		$\Gamma_{p0}=4 \text{ keV } 2.$ E(level): from Zr(p,p). Other: 11020 40 from (³ He,t).

⁹³Nb Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ ‡	XREF		Comments
					$ \Gamma_{p0}=4 \text{ keV } 2. $ E(level): from Zr(p,p). Other: 11020 40 from (³ He,t). E(level): isobaric analog of ⁹³ Zr g.s. $ I^{\pi}$: analyzing power in ⁹² Zr(pol p.p): L(³ He,d)=2.
11981 5	1/2+	90 ^{&} keV 9	K	TU	E(level): isobaric analog of 93 Zr(947 level). J ^{π} : L=0 from interference pattern in excitation functions in 92 Zr(p,p).
≈12171		24 keV		U	Analog of possible ⁹³ Zr(1169 level) (1972Ri04).
12503	3/2 ^{+a}	38 ^{&} keV <i>3</i>	G K		Γ_{p0} =8.0 keV 8. J ^{π} : L(³ He,d)=2. E(level): from Zr(p,p). Other: 12470 40 from
					(³ He,t). E(level): possible analog of ⁹³ Zr 1450 or 1425 level.
12570 40	7/2+,9/2+		G		E(level): possible analog of 93 Zr(1598 level). J ^{π} : L=4 in (³ He,d).
12993	1/2+	42 ^{&} keV 3	K		 Γ_{p0}=10 keV <i>I</i>. J^π: L=0 from interference pattern in excitation functions in (p,p). E(level): possible analog of ⁹³Zr 1910 or 1918
13090 40	9/2-,11/2-		G		level. E(level): possible analog of 93 Zr(2025 level). J ^{π} : L=5 in (³ He,d).
13542		68 ^{&} keV 5	K		E(level): possible analog of ⁹³ Zr 2458 or 2474 level.
13581	3/2+ <i>a</i>	45 ^{&} keV 5	K		E(level): possible analog of ⁹³ Zr 2531 or 2548 level.
13839	3/2+ <i>a</i>	63 ^{&} keV 3	K		Γ_{p0} =14.0 keV 14. E(level): possible analog of ⁹³ Zr(2770 level)
14091		30 ^{&} keV 3	к		$E(\text{level})$: possible analog of ${}^{93}\text{Zr}(3077 \text{ level})$.
14363	5/2 ^{+a}	51 ^{&} keV 5	K		 Γ_{p0}≤2.0 keV. E(level): possible analog of ⁹³Zr(3391 level). J^π: L=2 from interference pattern in excitation functions in (p,p).
14477	7/2-	43 ^{&} keV 7	K		Γ_{p0} =2.0 keV 3. E(level): possible analog of ⁹³ Zr(3421 level). J ^{π} : from L and analyzing power in Zr(p,p), (pol
16400 50	-	5.05 MeV	0		GDR. Γ from (γ ,xn).

[†] From least-squares fit to adopted E γ , assigning 1 keV uncertainty to E γ data for which the authors did not assign an uncertainty.

[‡] From Coulomb excitation, if not indicated otherwise.

[#] Band(A): π =- mixed symmetry states. Interpreted in (p,2n γ) as mixed-symmetry state associated with (π 2p_{1/2}) \otimes (first 2⁺ in ⁹⁴Mo). The assignment is based on M1 and E2 transition strengths to 687 and 811 states (interpreted as symmetric one-phonon states), energy systematics. J^{π} and comparison with shell-model calculations (2006Or09).

states), energy systematics, J^{π} and comparison with shell-model calculations (2006Or09). ^(a) Interpreted in (p,2n γ) as symmetric one-phonon state with configuration of ($\pi p_{1/2}^{-1}$) \otimes (first 2⁺ state in ⁹⁴Mo) (2006Or09).

[&] From Zr(p,p'), (pol p,p) IAR.

^{*a*} From partial wave analysis of analyzing power in 92 Zr(pol p,p) IAR.

⁹³Nb Levels (continued)

- ^{*b*} From statistical analysis in $(n,n'\gamma)$.
- ^c Two levels at essentially the same energy are proposed in $(n,n'\gamma)$ near 1950 keV and 1968 keV because, in each case, the authors were unable to fit experimental data for all the attributed γ rays (based on $\gamma\gamma$ coin) by means of a statistical theory excitation function for a single level.
- ^{*d*} From DSAM in $(n,n'\gamma)$.
- ^{*e*} Band(B): K=37/2 oblate M1 band? Possible M1 band. β =-0.14 is calculated using independent particle model for the $\nu(d_{5/2})(h_{11/2}) \pi(g_{9/2})^3$ configuration suggested by 2007Wa45. No cross-over transitions observed; possibly they are suppressed as a result of the high K.
- ^f Based on value suggested in (¹⁶O,p4n γ) but, in some cases, the evaluator shows the resulting J^{π} values in parentheses here.
- ^g Isovector excitation is proposed by 2010Or01 for this state in $(p,2n\gamma)$.
- ^{*h*} Isoscalar excitation is proposed by 2010Or01 for this state in $(p,2n\gamma)$.
- ^{*i*} Band(C): π =- 2-phonon IS states. Interpreted by 2010Or01 as 2-phonon isoscalar excitations, expected based on particle-core weak-coupling model.
- ^{*j*} Band(D): π =+ 1-phonon IV states. π =+ first-order isovector excitations. Large B(M1) to isoscalar states.
- ^{*k*} Band(E): $\pi 1g_{9/2} \otimes (2^+, {}^{92}Zr)$. First-order isoscalar $\pi = +$ excitations, forming a J=5/2 through 13/2 quintet of states. Shell-model calculations indicate strongly collective E2 transition rates to $9/2^+$ g.s. with predominantly isoscalar character.

					nmas (continued)				
							<u>γ(⁹³N</u>	<u>b)</u>	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α^{e}	Comments
30.77	1/2-	30.77 2	100	0.0	9/2+	M4		1.693×10 ⁵	B(M4)(W.u.)=11.49 20 E_{γ} : from IT decay. Mult.: from α (K)exp and subshell ratios in IT decay.
686.79	3/2-	655.9 ^{&} 2	100 ^{&}	30.77	1/2-	(M1+E2)	-0.13 +9-14	0.00187	B(M1)(W.u.)=0.27 +14-27; B(E2)(W.u.)=11 +16-11 Mult.: D+Q from $(\alpha, p\gamma)$; $\Delta \pi$ =no from level scheme. δ : from $(\alpha, p\gamma)$.
743.95	7/2+	744.06 12	100	0.0	9/2+	M1+E2	+0.236 18	1.41×10 ⁻³	B(M1)(W.u.)=0.099 8; B(E2)(W.u.)=10.2 17 B(E2)(W.u.)=8.74 25 from measured B(E2) \uparrow =0.0175 5 in Coulomb excitation. E _y : weighted average of 743.82 17 from (n,n' γ), 743.92 16 from from Coulomb excitation and 744.2 1 from (p,2n γ). Mult.: from $\gamma(\theta)$ in Coulomb excitation and RUL. δ : abs(δ) from Coul. ex.; sign from δ =+0.25 +9-6 from (α ,p γ), +0.25 +13-11 from (n,n' γ), +0.30 +10-8 and +0.21 4 from $\gamma(\theta)$ in Coulomb excitation, +0.26 8 from (n, 2n γ)
808.82	5/2+	64.88 <i>18</i>	1.25 8	743.95	7/2+	(M1)		0.767 13	B(M1)(W.u.)=0.160 <i>12</i> E_{γ} : weighted average of 65.0 2 from (p,2n γ) and 64.6 3 from Coulomb excitation. I _{γ} : from Coulomb excitation. Other: <1.0 from (p,2n γ). Mult.: D from RUL: $\Delta\pi$ =no from level scheme.
		808.53 12	100.00 8	0.0	9/2+	E2		1.20×10 ⁻³	B(E2)(W.u.)=10.4 4 B(E2)(W.u.) from measured B(E2) \uparrow =0.0157 5. E _y : weighted average of 808.42 22 from (n,n' γ) and 808.58 15 from Coulomb excitation. I _y : from Coulomb excitation. Mult.: Q from (16 O,p2n γ); not M2 from RUL. δ (Q,O)=-0.03 +6-8 from (α ,p γ).
810.32	5/2-	123.3 ^{&} 2 779.53 22	<1 ^{&} 100	686.79 30.77	3/2 ⁻ 1/2 ⁻	(E2)		1.31×10 ⁻³	B(E2)(W.u.)<78 Mult.=Q, δ (Q,O)=-0.15 20 from (α ,p γ); adopted $\Delta \pi$ =no
949.80	13/2+	949.81 <i>3</i>	100	0.0	9/2+	E2		8.12×10 ⁻⁴	B(E2)(W.u.)=6.70 23 B(E2)(W.u.) from measured B(E2) \uparrow =0.0241 8. E _γ : from ε decay (6.85 h). Mult.: Q from (¹⁶ O,p2nγ); not M2 from RUL. $\delta(\Omega, \Omega) = -0.18 \ ls$ from (α pγ)
978.91	11/2+	978.94 14	100	0.0	9/2+	M1+E2	-0.255 8	7.69×10^{-4}	B(M1)(W.u.)=0.085 6; B(E2)(W.u.)=5.96 20

 $^{93}_{41}\mathrm{Nb}_{52}\text{--}11$

						Adopt	ted Levels,	Gammas (con	tinued)
							γ (⁹³ Nb)	(continued)	
E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α^{e}	Comments
1082.68	9/2+	103.80 <i>11</i> 338.73 <i>7</i>	9 <i>3</i> 100.0 <i>17</i>	978.91 743.95	11/2 ⁺ 7/2 ⁺	(E2+M1)	-0.09 2	0.00911 <i>16</i>	B(E2)(W.u.) from measured B(E2) [↑] =0.0179 <i>6</i> . E _γ : weighted average of 978.83 22 from (n,n'γ) and 979.01 18 from Coulomb excitation. Other E _γ : 979.3 1 from (p,2ηγ). Mult.: D+Q from $\gamma(\theta)$ in Coulomb excitation; not E1+M2 from RUL. δ: from T _{1/2} and B(E2), sign from $\gamma(\theta)$ in Coulomb excitation and $\gamma\gamma(\theta)$ in (p,2ηγ). Other δ: -0.40 +18-47 from (n,n'γ); -0.251 11, abs(δ)<0.5 and δ=-0.4 3 or +2.1 3 from $\gamma(\theta)$ in Coulomb excitation; -0.27 +9-13 from (α,pγ); -0.13 7 from $\gamma\gamma(\theta)$ in (p,2ηγ). E _γ : weighted average of 103.7 2 from (p,2ηγ), 103.94 15 from (n,n'γ) and 103.5 3 from Coulomb excitation. I _γ : unweighted average of 10.9 9 from Coulomb excitation, 3 2 from (p,2ηγ) and 14.4 24 from (n,n'γ). The weighted average from (n,n'γ) and Coulomb excitation is 10.1 22. B(M1)(W.u.)<0.14; B(E2)(W.u.)<14 E _γ : weighted average of 338.67 17 from (n,n'γ), 338.77 9 from Coulomb excitation and 338.6 2 from (p,2ηγ). I _γ : weighted average from (p,2ηγ) and Coulomb excitation. Mult.: D+Q from (p,2ηγ); $\Delta\pi$ =no from level scheme.
									from $(n,n'\gamma)$, -0.14 7 and $+0.13$ 11 from Coulomb excitation.
		1082.53 15	35 3	0.0	9/2+	M1+E2	>1.8	6.08×10 ⁻⁴	 B(M1)(W.u.)<0.00035; B(E2)(W.u.)=1.03 9 B(E2)(W.u.) from measured B(E2)↑=0.00257 23. E_γ: weighted average of 1082.3 3 from (n,n'γ), 1082.6 3 from Coulomb excitation and 1082.6 2 from (p,2nγ). I_γ: unweighted average of 29 4, 30.9 15 and 40.0 23 from Coulomb excitation, 38 2 from (p,2nγ). Others: 51.5 15, 37, 33, and 18 6 from (n,n'γ). The weighted average of all data is 39 4. Mult.: D(+Q) from (n,n'γ); not E1+M2 from RUL. δ: >1.8 from B(E2)↑=0.00257 23 in Coulomb excitation and adopted γ properties if T_{1/2}>2.8 ps. Other δ: -0.4 to +1.8 from (n,n'γ); -2.47 from γ(θ) in Coulomb excitation (2002Ka05), but uncertainty is unstated and the sign is inconsistent with δ from (n,n'γ).

				Adopted Lev	els, Gammas	(continued)	
				$\gamma(^{93}$	Nb) (continue	ed)	
\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{e}	Comments
3/2,5/2,7/2	318.3 2	100	808.82 5/2+	D+Q	-0.20 6	0.01053	 E_γ: from (p,2nγ). 318.27 <i>17</i> from (n,n'γ) for triplet, 318.16 <i>20</i> from Coulomb excitation for doublet. Mult.,δ: from (p,2nγ).
$(5/2)^{-}$	473.9 <mark>&</mark> 2	5 ^{&} 4	810.32 5/2-				
	597.3 ^b 2	25 ^b 4	686.79 3/2-	M1+E2	+0.14 ^b 4		B(M1)(W.u.)=0.11 +4-5; B(E2)(W.u.)=6 +4-5 Mult.: D+Q from $\gamma\gamma(\theta)$ in (p,2n γ); Δ π =no from RUL.
	1253.5 ^{&} 2	100 ^{&} 4	30.77 1/2-				Mult.: not M2 from RUL.
9/2+	318.3 <i>I</i>	44 8	978.91 11/2+	(M1)		0.01053	B(M1)(W.u.)=0.73 18 E \cdot from (n 2nc) 218 27 17 from (n n(c)) for
							 E_γ: from (p,2nγ). 318.27 <i>17</i> from (n,n'γ) for triplet, 318.16 <i>20</i> from Coulomb excitation for doublet. I_γ: unweighted average of 32.1 <i>19</i> and 61 <i>3</i> from Coulomb excitation, 53 <i>2</i> from (n,n'γ), 31 <i>5</i> from (p,2nγ). The weighted average is 44 <i>7</i>. Mult.: D(+Q) from (n,n'γ) and Coulomb excitation; adopted Δπ=no. δ(D,Q)=-0.04 <i>9</i> or -10 +5-80 from (n,n'γ), >+0.07 from Coulomb excitation.
	553.10 9	52.2 20	743.95 7/2+	(M1(+E2))	+0.02 3	0.00282 24	 B(M1)(W.u.)=0.16 3; B(E2)(W.u.)=0.2 +7-2 E_γ: weighted average of 553.07 25 from (n,n'γ), 553.3 4 from Coulomb excitation and 553.1 1 from (p,2nγ). I_γ: weighted average of 49 4 and 57 6 from Coulomb excitation, 51 2 from (n,n'γ), 61 5 from (p,2nγ). Mult.: D(+Q) from (n,n'γ); adopted Δπ=no. δ: from γγ(θ) in (p,2nγ). Other δ: -0.3 +3-7 from (n,n'γ), -0.03 5 from (p,2nγ).
	1297.38 9	100.0 25	0.0 9/2+	M1+E2	+0.355 25	4.45×10 ⁻⁴	B(E2)(W.u.)=1.52 10; B(M1)(W.u.)=0.022 4 B(E2)(W.u.) from measured B(E2) \uparrow =0.00381 24. E _{γ} : weighted average of 1297.2 4 from (n,n' γ), 1297.3 3 from Coulomb excitation and 1297.4 1 from (p,2n γ). I _{γ} : weighted average of 100 6 and 100 6 from Coulomb excitation, 100 4 from (n,n' γ), 100 5 from (p,2n γ).

 $\frac{\mathrm{E}_i(\mathrm{level})}{1127.09}$

1284.26

1297.22

					Ado	pted Levels,	Gammas (co	ontinued)	
						γ (⁹³ Nb)	(continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α e	Comments
1315.50	5/2+	506.7 2	23.5 12	808.82	5/2+	M1+E2	-1.4 8		Coulomb excitation and adopted branching and $T_{1/2}$; sign from δ =+0.31 9 from $\gamma\gamma(\theta)$ in (p,2n γ). Other: 0.33 +17-6 from Coulomb excitation. B(M1)(W.u.)=0.029 +25-29; B(E2)(W.u.)=2.3×10 ² +12-22 E ₂₇ δ : from (p,2n γ).
		571.5 2	100.0 25	743.95	7/2+	M1+E2	+0.14 4		Mult.: D+Q from $\gamma\gamma(\theta)$ in (p,2n γ); $\Delta\pi$ =no from RUL. B(M1)(W.u.)=0.25 +9-22; B(E2)(W.u.)=16 +11-16 E _{γ} , δ : from (p,2n γ). Other δ : +0.10 +18-15 from $\gamma(\theta)$ in (n,n' γ) if J(1315)=5/2.
1335.04	17/2+	385.224 23	100	949.80	13/2+	E2		0.01002	Mult.: D+Q from (p,2n γ); $\Delta \pi$ =(no) from level scheme. B(E2)(W.u.)>0.19 E _{γ} : weighted average of 385.22 2, 385.38 9 from ε decay (6.85 h), 385.07 17 from (n,n' γ) and 385.1 2 from (p,2n γ).
1369.86	5/2-	559 4 ^b 2	$100^{b} 4$	810 32	5/2-	D+O	-0.32^{b} 7		Mult.: Q from $({}^{10}\text{O},\text{p}2\text{n}\gamma)$; not M2 from KUL.
1507.00	572	$683.2^{b} 2$ 1338.9	$30^{b} 4$	686.79 30.77	$3/2^{-}$ $1/2^{-}$	D+Q D+Q	-0.34^{b} 5		
1395.42	(7/2 ⁻)	584.97 22	100 4	810.32	5/2-	D+Q	-0.10 2		Other E γ : 585.1 2 from (p,2n γ). I $_{\gamma}$: from (p,2n γ). Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ) and $\gamma\gamma(\theta)$ in (p,2n γ). δ : from $\gamma\gamma(\theta)$ in (p,2n γ). Other δ : -0.55 +17-25 from $\gamma(\theta)$ in (n ' γ) but that assumes [(1395 level)=5/2]
		708.6 ^{&} 2	9 ^{&} 4	686.79	3/2-	[E2]			B(E2)(W.u.)<19 I _{γ} : from (p,2n γ). However, values of 54 and 43 are reported in (n,n' γ).
1455.0 1483.58	$(1/2^+, 3/2^+)$ $7/2^{(+)}$	646.2 <i>8</i> 400.8 ^{&} <i>1</i>	100 8.2 ^{&} 18	808.82 1082.68	5/2+ 9/2+				I_{γ} : weighted average of 7 2 from (p,2n γ) and 11 3 from
		674.8 1	24.4 15	808.82	5/2+	(M1+E2)	-0.11 8		 (n,n'γ). B(M1)(W.u.)=0.285 25; B(E2)(W.u.)=8 +12-8 E_γ: from (p,2nγ). I_γ: weighted average of 23.5 12 from (n,n'γ) and 27 2 from (p,2nγ). Mult.,δ: D+Q from γγ(θ) in (p,2nγ), Δπ=(no) from level scheme.
		1483.46 <i>16</i>	100.0 16	0.0	9/2+	(M1+E2)	-0.13 7		B(M1)(W.u.)=0.109 7; B(E2)(W.u.)=0.9 +10-9 E _{γ} : weighted average of 1482.8 4 from (n,n' γ) and 1483.5 1 from (p,2n γ). Other: 1483.8 2 from 2010Or01

From ENSDF

					Ad	lopted Levels,	Gammas (continu	ued)	
						γ ⁽⁹³ Nb)	(continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α e	Comments
									in (p,2n γ). I _{γ} : weighted average from (n,n' γ) and (p,2n γ). Mult., δ : D+Q from $\gamma\gamma(\theta)$ in (p,2n γ), $\Delta\pi$ =(no) from level scheme.
1490.99	15/2+	155.94 <i>3</i>	22 5	1335.04	17/2+	[M1,E2]		0.15 9	E_{γ} : from ε decay (6.85 h). I_{γ} : average of 22.3 20 from ε decay (6.85 h), 30.2 21 from ⁸² Se(¹⁶ O,p4ηγ) and 14.2 from (p.2ηγ).
		541.29 7	100.0 <i>16</i>	949.80	13/2+	M1+E2	-0.104 17		B(M1)(W.u.)>7.8×10 ⁻⁶ ; B(E2)(W.u.)>0.00020 E _γ ,I _γ : from ε decay (6.85 h). Mult.: D+Q from (p,2nγ); M1 from ⁸² Se(¹⁶ O,p4nγ). δ: weighted average of -0.09 3 from (n,n'γ) and -0.11 2 from (p,2nγ).
1499.94	(9/2 ⁻)	520.9 ^{&} 1	2 ^{&} 2	978.91	11/2+	[E1]			B(E1)(W.u.)=4.E-5 +5-4 E _{γ} ,I _{γ} : from (p,2n γ).
		689.6 ^{&} 1	18 ^{&} 3	810.32	5/2-	[E2]			B(E2)(W.u.)=24 8 $E_{\gamma}I_{\gamma}$: from (p,2n γ). $E\gamma$ =689.1 5 for doubly-placed γ and $I\gamma$ =11 from suitably divided intensity in (n,n' γ). Mult.: not M2 from RUL.
		756.1 <i>1</i>	6.9 10	743.95	7/2+	[E1]			B(E1)(W.u.)= 4.9×10^{-5} 15 E _{γ} : from (p,2n γ). I _{γ} : weighted average of 8 2 from (p,n γ) and 6.5 12 from (n,n' γ).
		1499.9 ^{&} 1	100& 2	0.0	9/2+	(E1(+M2))	-0.02 16		B(E1)(W.u.)=9.2×10 ⁻⁵ 25; B(M2)(W.u.)=0.07 +120-7 Mult.: D(+Q) from $\gamma(\theta)$ in (n,n'γ); Δπ=yes from level scheme. δ: from (n,n'γ).
1571.82	3/2-	287.4 <mark>&</mark> 2	20 ^{&} 5	1284.26	$(5/2)^{-}$				
		761.4 ^b 2	100 ⁶ 5	810.32	5/2-	M1+E2	-0.28^{b} 3		B(M1)(W.u.)=0.16 +6-13; B(E2)(W.u.)= $22 + 10 - 18$ Mult.: D+Q from (p,2n γ); not E1+M2 from RUL.
		885.1 ^b 2	37 <mark>6</mark> 5	686.79	3/2-	M1+E2	-1.60^{b} 14		B(M1)(W.u.)=0.011 +5-9; B(E2)(W.u.)=37 +15-30 Mult.: D+Q from $(p,2n\gamma)$; not E1+M2 from RUL.
1588.06	3/2 ⁽⁻⁾ ,5/2 ⁽⁻⁾	777.8 ^b 2	18 ^b 8	810.32	5/2-	(M1+E2)	-4.0 ^b +13-35		B(M1)(W.u.)<0.00078; B(E2)(W.u.)<14 Mult.: D+Q from $\gamma\gamma(\theta)$ in (p,2n γ); large δ favors $\Delta\pi$ =no.
		901.2 ^b 2	100 ^b 8	686.79	3/2-	(M1+E2)	$-0.53^{b} 6$		B(M1)(W.u.)<0.024; B(E2)(W.u.)<9.6 Mult.: D+Q from $\gamma\gamma(\theta)$ in (p,2n γ); Δ π =(no) from level scheme.
1603.24?	(9/2 ⁻)	$520.5^{f} 4$	37 5	1082.68	$9/2^+$				Other I γ : 70, also from $(n,n'\gamma)$.
		024.5^{1} 3 850 1 f 2	63	978.91 742.05	11/2 ⁺				Other by 40 also from $(n, n'a)$
		859.17 3	63	/43.95	1/21				Other 1 γ : 40, also from (n,n' γ).

From ENSDF

						Adopted Leve	els, Gammas	(continued)	
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	Comments	
1603.44	11/2+	520.9 ^b 2	13 ^b 3	1082.68	9/2+	(M1(+E2))	-0.07 ^b 9	B(M1)(W.u.)=0.032 +12-19; B(E2)(W.u.)=0.6 +16-6	
		624.4 2	33.0 15	978.91	11/2+	(M1+E2)	+0.11 6	Mult.: D(+Q) from $\gamma\gamma(\theta)$ in (p,2n γ); $\Delta\pi$ =(no) from level scheme. B(M1)(W.u.)=0.047 +14-26; B(E2)(W.u.)=1.5 +17-15 E _{γ} , δ : from (p,2n γ). Other E γ : 626.1 6 from (n,n' γ). I $_{\gamma}$: weighted average of 33.3 18 from (n,n' γ) and 32 3 from (p,2n γ).	
		653.6 2	100 3	949.80	13/2+	M1+E2	+0.17 3	Mult.: from $\gamma\gamma(\theta)$ in (p,2n γ); $\Delta\pi$ =(no) from level scheme. B(M1)(W.u.)=0.13 +4-7; B(E2)(W.u.)=9 +4-6 Mult : D+O from $\alpha\gamma(\theta)$ in (p.2n γ); not E1+M2 from PUL	
		859.5 2	26 4	743.95	7/2+	[E2]		B(E2)(W.u.)=20 +7-12 E_{γ} : from (p,2n γ). I_{γ} : unweighted average of 29.8 18 from (n,n' γ) and 22 3 from (p,2n γ). Mult.: not M2 from RUL.	
		1603.5 <mark>&</mark> 2	23 ^{&} 3	0.0	9/2+				
1665.66	5/2+	856.9 <mark>&</mark> 2	<1 <mark>&</mark>	808.82	5/2+				
		921.6 ^b 2	100 ^b 2	743.95	7/2+	M1+E2	+1.4 ^b 2	B(M1)(W.u.)=0.039 +11-14; B(E2)(W.u.)=92 +22-29 Mult.: D+Q from (p,2nγ) and (n,n'γ); $\Delta \pi$ =no from RUL. δ: other δ: -0.40 5 or -1.60 15 from (n,n'γ).	
		1665.7 <mark>&</mark> 2	2 ^{&} 2	0.0	9/2+				
1679.50	5/2 ⁽⁺⁾ ,7/2	364.1 ^b 2	60 <mark>6</mark> 3	1315.50	$5/2^{+}$	D+Q	-0.17 ^b 9	Mult.: from $(p,2n\gamma)$.	
		382.4 <mark>&</mark> 2	16 ^{&} 3	1297.22	9/2+			Other E γ (I γ): 381.5 3 (36) from (n,n' γ).	
		870.1 ^{&} 2	7 ^{&} 3	808.82	5/2+				
		935.7 ^b 2 1679.58 24	100 ^b 3 37.4 17	743.95 0.0	7/2 ⁺ 9/2 ⁺	D(+Q)	+0.09 ^b 9	Mult.: from (p,2n γ). E_{γ} : weighted average of 1679.7 2 from (p,2n γ) and 1679.1 4 from (n,n' γ). I_{γ} : weighted average of 38 2 from 1973Va09 in (n,n' γ) and 36 3 from	
		0_	P_					(p,nγ).	
1683.36	9/2+	$600.7^{\circ} 2$	17× 4	1082.68	9/2+		h		
		704.2 ⁰ 2	42 ° 4	978.91	11/2+	M1+E2	+0.21° 4	B(M1)(W.u.)=0.113 +19-22; B(E2)(W.u.)=10 5 Mult.: D+Q from $\gamma\gamma(\theta)$ in (p.2n γ); not E1+M2 from RUL.	
		939.3 2	100 3	743.95	7/2+	M1+E2	-0.20 4	B(M1)(W.u.)=0.114 +17-20; B(E2)(W.u.)=5.3 +22-23 E _γ ,δ: from (p,2nγ). I _γ : weighted average from (n,n'γ) and (p,2nγ). Mult.: D+Q from γγ(θ) in (p,2nγ); not E1+M2 from RUL.	
		1683.2 2	57.4 19	0.0	9/2+	(M1+E2)	-0.34 25	 B(M1)(W.u.)=0.0106 +22-24; B(E2)(W.u.)=0.4 +6-4 E_γ,δ: from (p,2nγ). Other E_γ: 1682.1 6 from (n,n'γ). I_γ: weighted average of 58.3 21 (1973Va09) in (n,n'γ) and 54 4 from (p,2nγ). Mult.: D+Q from (p,2nγ); Δπ=no from level scheme. 	

 $^{93}_{41}$ Nb₅₂-16

					Adop	ted Levels, Ga	mmas (conti	nued)
						γ ⁽⁹³ Nb) (c	continued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	δ^{\ddagger}	Comments
1686.34	13/2+	707.4 ^b 2	88 ^b 4	978.91	11/2+	M1+E2	-0.09^{b} 3	B(M1)(W.u.)=0.115 +22-28; B(E2)(W.u.)=1.9 14 Mult.: D+Q from $\gamma\gamma(\theta)$ in (p,2n γ); not E1+M2 from RUL.
		736.5 <mark>b</mark> 2	90 <mark>b</mark> 4	949.80	$13/2^{+}$	D+Q	-0.27 ^b 13	Other δ : $-0.25 < \delta(D,Q) < +1.0$ in $(n,n'\gamma)$.
		1686.3 ^{&} 2	100 ^{&} 4	0.0	9/2+	[E2]		B(E2)(W.u.)=3.5 +7-9 Other E γ : 1685.3 5 from (n,n' γ). Other I(737 γ):I(1686 γ): 100 5:63.4 24 (1973Va09), 100:69 (1992De08) and 100:88 (1982Av05) in (n,n' γ). Mult.: not M2 from RUL.
1694.0?		950 ^f	100	743.95	7/2+			E_{γ} : order of 744 γ and 950 γ not known from (n,n' γ).
1703.51	3/2+,5/2+	387.9 ^b 2	100 ^b 4	1315.50	5/2+	(M1(+E2))	-0.02^{b} 6	B(M1)(W.u.)=1.3 +6-13; B(E2)(W.u.)=4 +22-4 Mult.: D(+Q) from (p,2nγ); $\Delta\pi$ =no from level scheme.
		894.8 ^b 2	87 ^b 4	808.82	5/2+	(M1+E2)	-0.3^{b} 1	B(M1)(W.u.)=0.09 +4-9; B(E2)(W.u.)=10 +8-10 Mult.: D+Q from (p,2nγ); $\Delta\pi$ =no from level scheme.
1772.96	(≤7/2)	318.27 ^{<i>f</i>} 17	25	1455.0	(1/2+,3/2+)			E_{γ},I_{γ} : for multiplet; branching is from suitably divided I_{γ} in $(n,n'\gamma)$. This branch is not reported in $(p,2n\gamma)$, so placement is indicated as tentative here. See comment on 646 γ also.
		646.0 ^{&} 2	86 ^{&} 4	1127.09	3/2,5/2,7/2			 Placement from (p,2nγ); note, however, that a 646.2γ deexcites the 1454 level (fed by 318γ from 1773 level in (n,n'γ) but not in (p,2nγ)), so assumed order of 318γ and 646γ may differ in the two reaction studies. Mult.: M2 and higher-order multipolarity excluded by RUL.
		964.0 ^{&} 2	100 ^{&} 4	808.82	5/2+			Mult.: M2 and higher-order multipolarity excluded by RUL.
1779.27	(5/2 ⁻)	969.0 ^b 2	100 ^b 5	810.32	5/2-	(M1(+E2))	+0.04 ^b 6	B(M1)(W.u.)=0.31 +9-13; B(E2)(W.u.)=0.5 +17-5 Mult.: D(+Q) from (p,2nγ); $\Delta\pi$ =(no) from level scheme.
		1092.4 ^b 2	8 ^b 5	686.79	3/2-	(M1(+E2))	+0.05 ^b 9	B(M1)(W.u.)=0.017 +12-13; B(E2)(W.u.)=0.04 +14-4 Mult.: D(+Q) from (p,2nγ); $\Delta\pi$ =(no) from level scheme.
1784.40	$(5/2^+)$	701.71 24	100	1082.68	9/2+			
1812.34	(19/2)	477.3 ^{&} 2	100 <mark>&</mark>	1335.04	$17/2^{+}$			E_{γ} : for doubly-placed γ .
1840.07	3/2-,5/2-	1029.6 ^{&} 2	20 ^{&} 4	810.32	5/2-	(M1+E2)		B(M1)(W.u.)=0.043 9, B(E2)(W.u.)=4.4 10 or B(M1)(W.u.)=0.046 10, B(E2)(W.u.)=1.3 12. Mult.: D+Q from (p,2nγ); $\Delta \pi$ =(no) from level scheme. δ: +0.32 6 or +0.17 8 from $\gamma \gamma(\theta)$ in (p,2nγ).
		1153.4 ^{&} 2	100 ^{&} 4	686.79	3/2-	M1+E2		B(M1)(W.u.)=0.164 +11-12, B(E2)(W.u.)=2.5 14 or B(M1)(W.u.)=0.157 12, B(E2)(W.u.)=8 4. Mult.: D+Q from γγ(θ) in (p,2nγ); not E1+M2 from RUL for either possible value of δ. δ: +0 14 4 or +0 26 6 from γγ(θ) in (p,2nγ)
1908.1	(5/2)	1908.1 11	100	0.0	9/2+			(p,2ny).

					Adopted	Levels, Gam	mas (continu	ed)	
						$\gamma(^{93}\text{Nb})$ (cor	ntinued)		
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{e}	Comments
1910.68	7/2+,9/2+,11/2+	613.4 ^b 1	10 ^b 3	1297.22	9/2+	(M1+E2)	-0.20 ^b 12		B(M1)(W.u.)=0.048 <i>16</i> ; B(E2)(W.u.)=5 +7-5 Mult.: D+Q from γγ(θ) in (p,2nγ); $\Delta \pi$ =(no) from level scheme.
		828.1 ^b 1	7 ^b 3	1082.68	9/2+	M1+E2	-0.61 ^b 17		B(M1)(W.u.)=0.010 5; B(E2)(W.u.)=6 4 Mult.: D+Q from $\gamma\gamma(\theta)$ in (p,2n γ); not E1+M2 from RUL.
		1910.6 ^{&} 1	100& 3	0.0	9/2+	M1+E2	+3.9 36	4.52×10 ⁻⁴ 23	B(M1)(W.u.)=0.0010 +18-10; B(E2)(W.u.)=4.4 7 Mult.: D+Q from $\gamma(\theta)$ in (n,n'γ); not E1+M2 from RUL. δ: from +0.25< δ (D,Q)<+7.5 in (n,n'γ).
1915.92	7/2	600.4^{b} 2	36 ^b 4	1315.50	5/2+	D+Q	$+0.06^{b}$ 4		
		833.4 ^b 2	100 ^b 4	1082.68	9/2+	D(+Q)	-0.01^{b} 2		
		1107.2 [°] 2	4 ^{<i>x</i>} 4	808.82	5/2+				
		1172.1 ^{a} 2	12 [°] 4	743.95	7/2+				
		1915.5 [°] 2	$5^{\alpha} 4$	0.0	9/2+		h		
1947.73	3/2,5/2,7/2	1137.40 2	1000	810.32	5/2-	D(+Q)	$+0.05^{\circ}$ 4		Mult.: from $(p,2n\gamma)$.
1949.72	$(7/2^+)$	270.1 [°] 2	100 5	1679.50	$5/2^{(+)}, 7/2$				
		866.8 [°] 2	9 [°] 5	1082.68	9/2+				
		971.1 ^{a} 2	<20	978.91	$11/2^{+}$	[E2]	L		B(E2)(W.u.)=0.18 + 19 - 18
		1140.80 2	1000 5	808.82	5/2+	(M1+E2)	+0.210 5		B(M1)(W.u.)=0.010 +4-10; B(E2)(W.u.)=0.33 +21-33 Mult : D+O from (p 2pa): $\Delta \pi$ -(po) from
									level scheme. $D+Q$ from $(p,2ny)$, $\Delta n = (n0)$ from
		1205.9 2	89 <i>4</i>	743.95	7/2+				E_{γ} : from (p,2n γ). I_{γ} : weighted average of 85 6 from (n,n' γ) and 92 5 from (p,2n γ).
1949.81	(11/2)	266.4 ^{&} 2	32 ^{&} 5	1683.36	$9/2^{+}$				
		346.4 <mark>&</mark> 2	50 & 5	1603.44	$11/2^+$				
		1949.8 <mark>&</mark> 2	100 ^{&} 5	0.0	$9/2^+$				
1968.27	$(13/2^{-})$	365.0 ^{&} 2	45 ^{&} 3	1603.24?	$(9/2^{-})$				
	× 1 /	477.3 ^{&} 2	100 ^{&} 3	1490.99	$15/2^{+}$				E_{γ} : for doubly-placed γ .
1968.87	11/2+	282.5 1	23 5	1686.34	13/2+	[M1,E2]		0.021 7	E'_{γ} : from (p,2n γ). I _{γ} : weighted average of 18 5 from (n,n' γ) and 27 5 from (p,2n γ).
		285.4 1	29 6	1683.36	9/2+	[M1,E2]		0.021 7	E_{γ} : from (p,2n γ). I_{γ} : weighted average of 21 6 from (n,n' γ) and 34 5 from (p,2n γ).

⁹³₄₁Nb₅₂-18

					Adopted I	Levels, Gammas ((continued)	
					<u> </u>	(⁹³ Nb) (continued	d)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{e}	Comments
1968.87	11/2+	990.0 ^b 1	64 ^b 5	978.91 11/2+	M1+E2	-0.83 ^b 16		B(M1)(W.u.)=0.030 8; B(E2)(W.u.)=21 7 I _γ : note that branching from (n,n'γ) varies widely (34 6 (1973Va09), 127 (1992De08), 48 (1983Av05)). Mult.: D+Q from γγ(θ) in (p,2nγ); not E1+M2 from RUL.
		1019.0 <i>1</i>	31 4	949.80 13/2+	M1+E2	-0.28 7		 B(M1)(W.u.)=0.021 5; B(E2)(W.u.)=1.6 9 E_γ,δ: from (p,2nγ). I_γ: weighted average of 28 3 from (n,n'γ) and 38 5 from (p,2nγ). Mult.: D+Q from γγ(θ) in (p,2nγ); not E1+M2 from RUL.
		1225.0 ^{&} 1	12 ^{&} 5	743.95 7/2+	[E2]			B(E2)(W.u.)=3.4 <i>16</i> Mult.: M2 and higher-order multipolarity excluded by RUL.
		1968.9 <i>1</i>	100 3	0.0 9/2+				E_{γ} : from (p,2n γ). I_{γ} : weighted average of 100 6 from (n,n' γ) and 100 5 from (p,2n γ).
1997.12	3/2-,5/2-	1186.9 ^b 2	100 ^b 5	810.32 5/2-	M1+E2	-0.31 ^b 11		B(M1)(W.u.)=0.17 +4-5; B(E2)(W.u.)=12 +8-9 Mult.: D+Q from $\gamma\gamma(\theta)$ in (p,2nγ); not E1+M2 from RUL.
		1310.2 ^b 2	12 ^b 5	686.79 3/2-	(M1+E2)	-0.29^{b} 12		B(M1)(W.u.)=0.015 +7-8; B(E2)(W.u.)=0.8 7 Mult.: D+Q from $\gamma\gamma(\theta)$ in (n,n' γ); $\Delta\pi$ =no from level scheme.
2002.52	$(11/2^+)$	399.1 <mark>&</mark> 2	20 ^{&} 2	1603.44 11/2+				
		502.4 ^{&} 2	12 2	1499.94 (9/2 ⁻)	[E1]			B(E1)(W.u.)<0.00040
		511.5 [°] 2	<20	1490.99 15/2+				
		1023.7 ^{a} 2	$10^{\circ} 2$	978.91 11/2+	[E2]	h		B(E2)(W.u.)<2.6
		1052.80 2	100° 2	949.80 13/2+	(M1+E2)	-0.630 7	6.50×10 ⁻⁴ 13	B(M1)(W.u.)<0.018; B(E2)(W.u.)<7.3 Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ); large δ favors $\Delta \pi$ =no. Other δ : +0.40 +4-8 or +4.5.5 from (n n' γ) if I=15/2
2012.41	$(<5/2)^{-}$	440.4 ^{&} 2	6 <mark>&</mark> 5	1571.82 3/2-				$\sin(10, 10, 10, 10, 17, 0, 01, 1.5, 5, 10, 10, 10, 10, 15, 15, 25, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10$
	~ , ,	1325.8 ^b 2	100 ^b 5	686.79 3/2-	M1+E2	+4.5 ^b +15-9		B(M1)(W.u.)=0.020 +15-20; B(E2)(W.u.)=2.4×10 ² +10-23
								Mult.: D+Q from $\gamma\gamma(\theta)$ in (p,2n γ); not E1+M2 from
								δ: from 2010Or01; supersedes $δ$ =-0.14 5 (2005Mc13) in (p,2nγ), reported prior to correction of a data analysis problem in that study.

From ENSDF

 $^{93}_{41}$ Nb₅₂-19

$\gamma(^{93}\text{Nb})$ (continued)

E_i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f	J_f^{π} Mult. [‡]	δ^{\ddagger}	α ^e	Comments
2019.7	(7/2-,9/2-)	1209.4 4	100	810.32 5/2	2-		-	
2023.91	$(\leq 5/2)^{-}$	452.1 ^{&} 2	3 ^{&} 3	1571.82 3/2	2-			
		1337.1 ^b 2	100 ^b 3	686.79 3/2	2 ⁻ M1+E2	-4.7 ^b +8-13		B(M1)(W.u.)=0.007 +4-5; B(E2)(W.u.)=9.E+1 +3-5 Mult.: D+Q from $\gamma\gamma(\theta)$ in (p,2n γ); not E1+M2 from RUL.
2037.2	$(9/2^+, 11/2^+)$	537.2 <i>3</i> 1087.4 6	100 28	1499.94 (9/ 949.80 13	(2^{-}) (2^{+})			
2099.23	$(3/2^{-}, 5/2, 7/2)$	703.8 <mark>&</mark> 2	100 <mark>&</mark> 7	1395.42 (7)	(2^{-})			
	× 1 - 1 - 1 - 1 - 7	1288.9 ^b 2	46 <mark>b</mark> 7	810.32 5/2	2 ⁻ D(+O)	-0.05^{b} 5		Other Iy: 13 5 in $(n,n'\gamma)$.
2122.67	9/2+	639.0 ^{&} 1	36 ^{&} 3	1483.58 7/2	2 ⁽⁺⁾			
		1143.7 ^b 1	71 ^b 3	978.91 11	/2 ⁺ M1+E2	+3.8 ^b +19–10		B(M1)(W.u.)=0.003 <i>3</i> ; B(E2)(W.u.)=34 7 Mult.: D+Q from $\gamma\gamma(\theta)$ in (p,2n γ); not E1+M2 from RUL.
		1378.9 ^b 1	29 ^b 3	743.95 7/2	2 ⁺ M1+E2	-0.19 ^b 8		B(M1)(W.u.)=0.0103 21; B(E2)(W.u.)=0.20 17 Mult.: D+Q from $\gamma\gamma(\theta)$ in (p,2nγ); not E1+M2 from RUL.
		2122.6 ^{&} 1	100 ^{&} 3	0.0 9/2	2+			Mult.: D+Q from (p,2n γ); $\Delta \pi$ =no from level scheme.
2126.89	(5/2-,7/2,9/2-)	626.9 ^{&} 2	100 ^{&} 4	1499.94 (9)	/2-)			• • •
		731.3 ^{&} 2	18 ^{&} 4	1395.42 (7)	/2-)			
		1316.61 ^{&} 20	10 ^{&} 4	810.32 5/2	2-			
		1383.1 <mark>&</mark> 2	13 ^{&} 4	743.95 7/2	2+			
2132.6	(≥7/2)	1153.7 5	100	978.91 11	/2+			
2153.60	$(1/2,3/2,5/2^{-})$	2122.8 2	100	30.77 1/2	2-			
2162.64	(11/2 ⁺ ,13/2,15/2 ⁺)	6/1.7 2	24 3	1490.99 15	/2*			E_{γ} : from (p,2n γ). I _{γ} : weighted average of 25 4 from (p,2n γ) and 22 6 from (n,n' γ).
		1183.7 ^{&} 2	100 ^{&} 4	978.91 11	/2+			
		1212.8 <mark>&</mark> 2	61 ^{&} 4	949.80 13	b/2 ⁺			
2170.65	9/2+	1087.6 ^{&} 2	10 ^{&} 3	1082.68 9/2	2+			
		1192.5 <mark>&</mark> 2	100 ^{&} 3	978.91 11	/2+			
		1221.6 ^{&} 2	60 ^{&} 3	949.80 13	b/2 ⁺			Other I γ : 82 4 from (n,n' γ). Mult.: M2 and higher-order multipolarity excluded by RUL.
		1361.1 ^{&} 2	31 ^{&} 3	808.82 5/2	2+			Other I γ : 63 from (n,n' γ). Mult.: M2 and higher-order multipolarity excluded by RUL.
		1426.1 <mark>&</mark> 2	27 ^{&} 3	743.95 7/2	2+			

20

					Adopted	Levels, C	Cammas (continued)
						$\gamma(^{93}\text{Nb})$	(continued)
E.(laval)	īπ	F †	т †	F.	īπ	Mult ‡	Comments
	J _i		1γ		$\frac{J_f}{f}$	Witti.	
2170.65 2180.04	9/2+ (17/2) ⁻	689.053 <i>19</i>	14 2 100.0 25	0.0 1490.99	9/2+ 15/2+	E1 ^c	This branch is absent in $(p,2n\gamma)$. E_{γ},I_{γ} : from ⁹³ Mo ε decay (6.85 h). Doubly placed in $(n,n'\gamma)$ and differently placed in $(p,2n\gamma)$, but the much stronger 1500 γ accompanying the 689 γ in those alternative placements is absent in ⁹³ Mo ε decay (6.85 h). Mult : from (¹⁶ O p4n γ)
		844.96 6	37.5 25	1335.04	17/2+		E _γ ,I _γ : from ⁹³ Mo ε decay (6.85 h). Other: 133 from ⁸² Se(¹⁶ O,p4nγ); γ not reported in (n,n'γ).
2184.14		849.1 <mark>&</mark> 2	100 <mark>&</mark>	1335.04	$17/2^{+}$		•
2203.5	$(9/2^+)$	600.4 ^{<i>f</i>} 3	24	1603.24?	(9/2 ⁻)		
		808.3 4	100	1395.42	$(7/2^{-})$		E_{γ} : for doublet in $(n,n'\gamma)$.
2200 7	$(7/2^{-})$	2203.2 4	33	0.0	9/2 ⁺		
2280.7	(7/2)	1536.//	100 100d	1225.04	1/2		
2310.9		9/6 ^a 1351 1 5	100	1335.04 078.01	$1/2^{+}$ $11/2^{+}$		
2367.5	9/2.13/2(+)	2367.3 10	100	0.0	$9/2^+$		
2506.88	7,2,13,2	1527.9 1	100	978.91	$11/2^+$		E_{γ} : from (p,2n γ).
		2506.9 1		0.0	9/2+		E_{γ} : from (p,2n γ).
2584.2	$3/2^+, 5/2^+$	1775.4 7	100	808.82	$5/2^+$		
2752.84	$(19/2)^+$	572.796 19	100 4	2180.04	$(1'/2)^{-}$		E_{γ}, I_{γ} : from ε decay (6.85 h).
		1201.91 14	59 4 55 4	1335.04	13/2 $17/2^+$		$E_{\gamma,1\gamma}$. from ε decay (0.85 fr). E. L.: from ε decay (6.85 h)
2832.8	21/2+	522d	$49^{d}7$	2310.9	17/2		
2032.0	21/2	1497.6	100 7	1335.04	$17/2^{+}$	E2 ^c	F_{n} ; from (¹⁶ O,p2n γ).
							I_{γ} : from (¹⁶ O,p4n γ).
3086.0	(21/2)	906 <mark>d</mark>	100 d	2180.04	$(17/2)^{-}$	0 ^{<i>c</i>}	
3667.8		835 d	100 d	2832.8	21/2+		
3674.0	(25/2)	588 <mark>d</mark>	100 d	3086.0	(21/2)		
3684.8		852 ^d	100 ^d	2832.8	$21/2^{+}$		
4104.7	$25/2^{(+)}$	420^d	9.7 ^d 7	3684.8	/_	D+O ^C	
		1271.9	100 5	2832.8	21/2+	Q ^C	E_{γ} : from (¹⁶ O,p2nγ). I_{γ} : from (¹⁶ O,p4nγ).
4403.0	(29/2)	729 ^d	100 d	3674.0	(25/2)		
4864.6	$29/2^{(+)}$	759.9 [#]	100 [#]	4104.7	$25/2^{(+)}$	E2 ^{<i>c</i>}	
5155.1		1481 ^d	100 d	3674.0	(25/2)		
5904.3	$33/2^{(+)}$	1039.7 [#]	100 [#]	4864.6	29/2(+)	E2 ^{<i>c</i>}	
6464.3	$11/2^{(+)}$	3626 <i>3</i>	29 9	2838	11/2	D	$E_{\gamma}, I_{\gamma}, Mult.$: from (γ, γ') E=6465 keV.
		4095 <i>3</i>	29 9	2367.5	9/2,13/2 ⁽⁺⁾	D	$E_{\gamma}, I_{\gamma}, Mult.:$ from (γ, γ') E=6465 keV.

						γ ⁽⁹³ Nb) (continued)	
E _i (level)	\mathbf{J}^{π}_{i}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α^{e}	Comments
6464.3	$11/2^{(+)}$	4514 <i>3</i>	11.4 11	1949.81	(11/2)	D		$E_{\gamma},I_{\gamma},Mult.:$ from (γ,γ') E=6465 keV.
		4783 <i>3</i>	11.1 4	1679.50	5/2 ⁽⁺⁾ ,7/2			May feed 1679 and/or 1683 and/or 1686 level.
		4071.2	0.2.4	1400.00	15/2+			E_{γ}, I_{γ} : from (γ, γ') E=6465 keV.
		4971 3	9.54	1490.99	$\frac{13/2}{7/2(+)}$			E_{γ}, I_{γ} . Holli $(\gamma, \gamma) = -0403$ KeV. E. I.: from $(\alpha, \alpha') = -6465$ keV.
		5168 3	1077	1297 22	$9/2^+$	D		E_{γ}, I_{γ} . Holli (γ, γ) $E=0405$ KeV. E_{γ}, I_{γ} Mult : from (γ, γ') $E=6465$ keV
		5384 <i>3</i>	16.8 7	1082.68	9/2 ⁺	D		$E_{\gamma}, I_{\gamma}, \text{Mult.: from } (\gamma, \gamma') E=6465 \text{ keV.}$
		5486 <i>3</i>	0.7 7	978.91	$11/2^{+}$			E_{γ}, I_{γ} : from (γ, γ') E=6465 keV.
		5516 <i>3</i>	100.0 18	949.80	13/2+	(M1) [@]	1.62×10^{-3}	$E_{\gamma}I_{\gamma}$,Mult.: from (γ, γ') E=6465 keV.
		6465 <i>3</i>	35.7 7	0.0	9/2+	(M1) [@]		E_{γ} , I_{γ} ,Mult.: from (γ, γ') E=6465 keV.
7372.3	(35/2-)	1468 <mark>d</mark>	100 d	5904.3	$33/2^{(+)}$	D+Q ^C		
7435.3	$37/2^{(-)}$	1531 ^d	100 ^d	5904.3	$33/2^{(+)}$	Q ^C		
7828.3	$39/2^{(-)}$	393 <mark>da</mark>	100 d	7435.3	$37/2^{(-)}$	M1 ^C		
8325.4	$41/2^{(-)}$	497 <mark>da</mark>	100 d	7828.3	$39/2^{(-)}$	D ^C		
8377.4	(37/2)	942 <mark>d</mark>	100 d 10	7435.3	$37/2^{(-)}$	D+Q ^C		
		1005 d	59 <mark>d</mark> 6	7372.3	(35/2-)	D ^C		
8940	$(43/2^{-})$	615 <mark>da</mark>	100 ^d	8325.4	$41/2^{(-)}$	M1 ^C		
9134.4	$(41/2^{-})$	1699 <mark>d</mark>	100 d	7435.3	$37/2^{(-)}$	(E2) ^C		
9425	$(45/2^+)$	485 <mark>d</mark>	100 d	8940	(43/2-)	E1 ^C		
9699.4	(39/2-,41/2-)	2264 ^d	100 d	7435.3	$37/2^{(-)}$			
9782.4?		1405 df	100 d	8377.4	(37/2)			
9922.4	$(43/2^{-})$	223 d	70 d 10	9699.4	(39/2-,41/2-)			
		788 <mark>d</mark>	100 d 13	9134.4	(41/2 ⁻)	M1 ^C		
10955.4		1033 d	100 d	9922.4	$(43/2^{-})$			

[†] From (n,n' γ), except as noted.

[‡] From $(n,n'\gamma)$, if not indicated otherwise. [#] From ⁸⁰Se(¹⁶O,p2n\gamma). Uncertainty in E γ unstated by authors.

[@] Mult=D (probably M1), from (γ, γ') E=6465 keV.

& From $(p,2n\gamma)$.

22

^{*a*} γ emitted within 1.3 ps of formation of parent state (2007Wa45).

^{*b*} From (p,2n γ).

^{*c*} From $\gamma(\theta)$, DCO ratio and/or linear polarization in ⁸²Se(¹⁶O,p4n γ). ^{*d*} From ⁸²Se(¹⁶O,p4n γ); uncertainty in E γ unstated by authors.

 γ (⁹³Nb) (continued)

- ^{*e*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^f Placement of transition in the level scheme is uncertain.

Adopted Levels,	ammas Legend		
Level Sche	e		
Intensities: Relative photon bran	hing from each level γE	ecay (Uncertain)	
1933 100 		10955.4	
8 2			
		9922.4	
		9782.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9699.4	
		<u>9134.4</u> 8940	
8 8 8 6 6 6 6 6			
		8377.4	
14 S 8	\$		
		7828.3	
(2^{-})		7435.3	
2(+)	$\begin{array}{c} 5_{5}(n_{1})_{3}\\ 5_{5}(n_{1})_{3}\\ 5_{5}(n_{1})_{3}\\ 5_{6}(n_{1})_{3}\\ 5_{6}(n_{1})_{4}\\ 5_{6}(n_{1})_{6}\\ 5_{7}(n_{1})_{6}\\ 5_{7}(n_{1})_{1}\\ 5_{7}$	6464.3	
		5004.2	
∠()		5904.3_	
2		2838	
. ,13/2 ⁽⁺⁾		2367.5	
(2)		1949.81	0.6 ps +
2 ⁺⁺ /2 ⁺		<u>1679.50</u> 1490.99	0.22 ps
(+) +	¥	1483.58	45.7 fs
+		1297.22	>2.8 ps
/2 ⁺ /2 ⁺	¥	978.91 949.80	258 fs 1 4.36 ps
			· P
		0.0	

 $^{93}_{41}\rm{Nb}_{52}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{93}_{41}\rm{Nb}_{52}$

Legend

Level Scheme (continued)

 $^{93}_{41}\text{Nb}_{52}$

 $^{93}_{41} \rm Nb_{52}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

⁹³₄₁Nb₅₂

 $^{93}_{41}\text{Nb}_{52}$

