⁹³Nb IT decay (16.12 y)

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Coral M. Baglin	NDS 112, 1163 (2011)	15-Dec-2010		

Parent: ⁹³Nb: E=30.77 2; $J^{\pi}=1/2^{-}$; $T_{1/2}=16.12$ y 12; %IT decay=100.0

1999ZhZY, 1991BaZS, 1990Co17, 1983Va25, 1982Re09, 1981Ll01, 1977Ll01, 1977Mo07, 1972FlZM, 1965Fl02, 1964Ho08. 1977Mo07: intrinsic Ge detector, measured $E\gamma$ and $I(30\gamma)/I(K \text{ x ray})$.

1999ZhZY observe both the 30.8-keV IT and a 28.5-keV transition; they attribute the latter to an electron bridge mechanism with electron bridge emission probability 0.061 *14* times that of the 30.8-keV radiation.

93Nb x-ray Emission Probabilities (per 100 IT decays):

The calculated values are those obtained using the program RADLST and the adopted decay scheme. The most precise measurement of I(K x ray) is that by 1990Co17 (other data are 11.5 *3* (1983Va25) and unpublished values of 11.6 *4*, 10.7 *3*, 11.0 *3* referenced in 1991BaZS).

The energy balance for this decay is satisfactory: total energy deposited is calculated to Be 30.3 11 cf. 30.77 2 based on Q value.

)

Calculated	1990Co17	X-ray
6.34 24		$(K_{\alpha 1})$
3.32 13		$(K_{\alpha 2})$
1.89 7		(K _β)
11.55 28	11.12 22	(K(Total)

⁹³Nb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments	
0	9/2+			
30.77 2	$1/2^{-}$	16.12 [#] y <i>12</i>	%IT=100	

[†] From $E\gamma$.

[‡] From Adopted Levels.

[#] weighted average of 16.13 y *15* (1983Va25; statistical uncertainty 0.10) and 16.11 y *19* (1981Ll01; presumed to supersede preliminary datum from 1977Ll01); decay was followed for >4 and 10 years, respectively. Other T_{1/2}: 13.6 y *3* (1965Fl02; decay followed for 11 y)); ≥ 5 y (1976Ju04; from γ (t), decay followed for 1 y).

 $\gamma(^{93}\text{Nb})$

E_{γ}^{\dagger}	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α &	$I_{(\gamma+ce)}^{@}$	Comments
30.77 2	5.91×10 ⁻⁴ # 9	30.77	1/2-	0 9/2+	M4	1.693×10 ⁵	100	$\begin{array}{l} {\rm ce}({\rm K})/(\gamma+{\rm ce}){=}0.153\ 3;\\ {\rm ce}({\rm L})/(\gamma+{\rm ce}){=}0.680\ 8;\\ {\rm ce}({\rm M})/(\gamma+{\rm ce}){=}0.147\ 3;\\ {\rm ce}({\rm N})/(\gamma+{\rm ce}){=}0.0193\ 4\\ {\rm ce}({\rm N})/(\gamma+{\rm ce}){=}0.000285\ 6\\ \alpha({\rm K}){\rm exp}{=}2.58{\times}10^4\ 15\ (1976{\rm Ju}04);\\ {\rm K}/{\rm L}{=}0.21\ 2\ (1964{\rm Ho}08)\\ {\rm other}\ \alpha({\rm K}){\rm exp}:\ 1.7{\times}10^4\ 3\ {\rm from}\\ {\rm I}(31\gamma)/{\rm I}({\rm K}\ {\rm x}\ {\rm ray}){=}8.0{\times}10^{-5}\ 10\\ (1977{\rm Mo}07),\ {\rm assuming}\ \omega_{\rm K}{=}0.75\ 3;\\ 2.4{\times}10^4\ 9\ (1999{\rm ZhZY}).\\ {\rm other}\ {\rm sub-shell\ ratios:\ {\rm K}/({\rm L}{+}{\rm M}){=}0.18\ 2\\ (1964{\rm Ho}08),\ 0.12\ 2\ (1972{\rm FIZM});\\ \end{array}$

⁹³Nb IT decay (16.12 y) (continued)

γ (⁹³Nb) (continued)

 $E_{\gamma}^{\dagger} = E_i$ (level)

Comments

K/(L+M+...)=0.19 2 (1982Re09); L/(M+N+...)=3.8 4 (1982Re09).

[†] From 1977Mo07. Others: 30.4 3 (1972FIZM), 30.7 1 (1976Ju04).

[‡] From measured $\alpha(K)$ exp and subshell ratios.

[#] From %IT=100 and $\alpha(31\gamma)$, assuming 1.4% uncertainty In $\alpha(31\gamma)$ calculation and an additional 0.4% uncertainty arising from uncertainty In E γ . this value differs from that calculated by 2007BeZP because that evaluation assumed a different value for $\alpha(31\gamma)$.

[@] Absolute intensity per 100 decays.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{93}_{41}\text{Nb}_{52}$