⁹³Tc ε decay (43.5 min) 1977Po13

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 112, 1163 (2011)	15-Dec-2010

Parent: ⁹³Tc: E=391.84 8; $J^{\pi}=1/2^-$; $T_{1/2}=43.5 \text{ min } 10$; $Q(\varepsilon)=3201.0 \ 10$; $\%\varepsilon+\%\beta^+$ decay=22.6 6

⁹³Tc-%ε+%β⁺ decay: [Σ(I(γ+ce) to ⁹³Mo g.s.) + Ti(⁹³Tc IT)]=98.8% 12, based on expected I(ε+β⁺)<2.3% to ⁹³Mo g.s. (from log $f^{1u}t>8.5$); assuming adopted I(2645γ, ⁹³Mo)/I(392γ, ⁹³Tc)=0.246 9, (Iγ normalization x Branching)=0.583 9 and %IT=77.4 6, leaving %(ε+β⁺)=22.6 6.

Others: 1988BeYT, 1974An24, 1974Ch12, 1968Ka25, 1966Al17.

⁹³Mo Levels

E(level) [†]	J ^π ‡	E(level) [†]	J ^{π‡}	E(level) [†]	J#‡	E(level) [†]	J ^π ‡
0.0 943.7 5 1492.2 5	$5/2^+$ $1/2^+$ $3/2^+$	2182.0 <i>10</i> 2539.0 <i>12</i> 2644.6 <i>3</i>	$3/2^+$ (3/2) (3/2) ⁻	2698.3 8 2861.5 <i>10</i> 2955.6 <i>12</i>	(3/2) ⁻ (3/2) ⁻ 1/2 ⁻ ,3/2 ⁻	3220.4 <i>6</i> 3298.2 <i>6</i>	$(3/2)^{-}$ $(3/2)^{-}$

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(294.6 12)	3298.2		0.45 4	4.79 <i>4</i>	0.45 4	εK=0.8573; εL=0.11570 5; εM+=0.02699 2
(372.4 12)	3220.4		1.05 9	4.64 4	1.05 9	εK=0.8605; εL=0.11315 3; εM+=0.026306 8
(637.2 16)	2955.6		0.93 12	5.18 6	0.93 12	εK=0.8654; εL=0.10931 2; εM+=0.025278 4
(731.3 14)	2861.5		0.35 6	5.72 8	0.35 6	ε K=0.8663; ε L=0.1086; ε M+=0.02510
(894.5 13)	2698.3		0.74 10	5.58 6	0.74 10	εK=0.8673; εL=0.1078; εM+=0.02488
(948.2 11)	2644.6		14.3 6	4.344 21	14.3 6	ε K=0.8676; ε L=0.1076; ε M+=0.02482
(1053.8 16)	2539.0		1.22 18	5.51 7	1.22 18	εK=0.8680; εL=0.1073; εM+=0.02473
(1410.8 14)	2182.0	0.0058 18	0.57 18	6.09 14	0.58 18	av Eβ=176.44 61; εK=0.8604 2; εL=0.10543 2; εM+=0.024282 4
(2100.6 11)	1492.2	0.20 6	0.50 17	6.50 15	0.70 23	av Eβ=475.92 50; εK=0.6243 6; εL=0.07588 8; εM+=0.01746 2
(2649.1 11)	943.7	1.2 2	0.80 12	6.50 7	2.0 3	av Eβ=721.44 51; εK=0.3487 5; εL=0.04224 6; εM+=0.009713 13
(3592.8 [#] 10)	0.0	≤1.7	≤0.73	$\geq 8.5^{1u}$	≤2.4	av Eβ=1172.34 46; εK=0.2633 3; εL=0.03212 3; εM+=0.007393 7

[†] From I(γ +ce) imbalance At level.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

$\gamma(^{93}\text{Mo})$

Iy normalization: $[\Sigma(I(\gamma+ce) \text{ to } {}^{93}\text{Mo g.s.}) + \text{Ti}({}^{93}\text{Tc IT})]=98.8\%$ 12, based on expected $I(\varepsilon+\beta^+)<2.3\%$ to ${}^{93}\text{Mo g.s.}$ (from $\log f^{4u}t>8.5$); assuming adopted $I(2645\gamma, {}^{93}\text{Mo})/I(392\gamma, {}^{93}\text{Tc})=0.246$ 9, (Iy normalization x Branching)=0.583 9 and %IT=77.4 6, leaving $\%(\varepsilon+\beta^+)=22.6$ 6. Several lines are reported for the first time by 1988BeYT. However, $E\gamma$ and Iy of established lines are not in very good agreement with data from earlier studies.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \&}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	α^{a}	Comments
^x 288.3 [@] ^x 309.2 [@]	0.24 [@] 10 0.57 [@] 10				_			E_{γ} : a similar E_{γ} is associated with 2450 and 2535 levels.
943.7 5	5.0 [#] 4	943.7	1/2+	0.0 5/2+	[E2]		0.000883 13	$ \begin{array}{l} \alpha = 0.000883 \ 13; \ \alpha(\mathrm{K}) = 0.000777 \ 11; \ \alpha(\mathrm{L}) = 8.83 \times 10^{-5} \ 13; \\ \alpha(\mathrm{M}) = 1.577 \times 10^{-5} \ 23; \ \alpha(\mathrm{N}+) = 2.53 \times 10^{-6} \\ \alpha(\mathrm{N}) = 2.39 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 1.331 \times 10^{-7} \ 19 \\ \% \mathrm{I}\gamma = 2.91 \ 23 \ \mathrm{assuming} \ \mathrm{recommended} \ \mathrm{decay} \ \mathrm{scheme} \ \mathrm{normalization}. \end{array} $
1046.8 10	2.1 3	2539.0	(3/2)	1492.2 3/2+	D+Q	-1.28 +14-15	0.000708 11	$\begin{aligned} &\alpha = 0.000708 \ 11; \ \alpha(\text{K}) = 0.000624 \ 9; \ \alpha(\text{L}) = 7.01 \times 10^{-5} \ 10; \\ &\alpha(\text{M}) = 1.251 \times 10^{-5} \ 18; \ \alpha(\text{N}+) = 2.01 \times 10^{-6} \ 3 \\ &\alpha(\text{N}) = 1.90 \times 10^{-6} \ 3; \ \alpha(\text{O}) = 1.077 \times 10^{-7} \ 16 \\ &\text{Mult.}, \delta: \ \text{from Adopted Gammas.} \end{aligned}$
^x 1343.8 [@]	0.97 [@] 17							E_{γ} : a similar E_{γ} is associated with a 2821 level, but a 1458 γ of similar strength that should accompany the 1344 γ is absent here.
1492.2 5	3.30 [#] 24	1492.2	3/2+	0.0 5/2+	(M1)		0.000415 6	$ \begin{array}{l} \alpha = 0.000415 \ 6; \ \alpha(\mathrm{K}) = 0.000307 \ 5; \ \alpha(\mathrm{L}) = 3.39 \times 10^{-5} \ 5; \\ \alpha(\mathrm{M}) = 6.05 \times 10^{-6} \ 9; \ \alpha(\mathrm{N}+) = 6.88 \times 10^{-5} \ 10 \\ \alpha(\mathrm{N}) = 9.23 \times 10^{-7} \ 13; \ \alpha(\mathrm{O}) = 5.33 \times 10^{-8} \ 8; \\ \alpha(\mathrm{IPF}) = 6.78 \times 10^{-5} \ 10 \\ \end{array} $
^x 1694.0 <i>10</i>	1.1 3							E_{γ} : a similar Eγ is associated with 1695 level. γ May not originate solely from ⁹³ Tc (43.5 min) because Iγ depends on duration of target irradiation (1977Po13). Eγ=1695.2 Jy=0.47 10 reported by 1988BeYT
2011.9 <i>10</i> ^x 2029.4 [@]	$1.6\ 2$ $1.14^{@}\ 17$	2955.6	1/2-,3/2-	943.7 1/2+				
2182.0 10	1.0 3	2182.0	3/2+	0.0 5/2+	(M1)		0.000524 8	α =0.000524 8; α (K)=0.0001459 21; α (L)=1.604×10 ⁻⁵ 23; α (M)=2.86×10 ⁻⁶ 4; α (N+)=0.000359 α (N)=4.37×10 ⁻⁷ 7; α (O)=2.53×10 ⁻⁸ 4; α (IPF)=0.000359 5 Mult.: from Adopted Gammas.
2644.58 26	24.6 9	2644.6	(3/2) ⁻	0.0 5/2+				 %Iγ=14.3 5 assuming recommended decay scheme normalization. E_v: weighted average of 2644.5 3 from 1974Ch12 and

 \mathbf{b}

93 Tc ε decay (43.5 min)	1977Po13 (continued)
---	----------------------

γ (⁹³Mo) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
					2644.8 5 from 1977Po13. I _y : weighted average of 25 3 (1977Po13), 23.5 13 (1974An24), and 26.0 15 (1974Ch12).
2698.3 8	1.27 [#] 17	2698.3	$(3/2)^{-}$	0.0 5/2+	
^x 2739.5 [@]	1.59 [@] 17				E_{γ} : a weak γ with this $E\gamma$ is reported in ⁹³ Tc ε decay (2.75 h) also,
2861.5 10	0.6 1	2861.5	$(3/2)^{-}$	0.0 5/2+	
^x 3129.0 5	3.7 2				From 1974Ch12. Attributed by 1977Po13 to 94m Tc decay. Also present in 1988BeYT (I γ =2.10 17).
3220.3 [‡] 6	1.80 [‡] 14	3220.4	$(3/2)^{-}$	0.0 5/2+	
3298.1 [‡] 6	0.77 [‡] 6	3298.2	$(3/2)^{-}$	0.0 5/2+	

[†] From 1977Po13, if not indicated otherwise. I γ is relative to I(392 γ , ⁹³Tc IT)=100.

[‡] Weighted average from 1977Po13 and 1974Ch12.

Weighted average from 1977Po13 and 1974An24.
@ From 1988BeYT; not reported in other ⁹³Tc ε decay (43.5 min) studies. Evaluator has renormalized Iγ so I(2645γ)=24.6 (cf. authors' value of 26 I); note, however, that I(392γ, ⁹³Tc IT)≈60 rather than 100. Evaluator considers that assignment of this γ to this decay has yet to be established.

[&] For absolute intensity per 100 decays, multiply by 0.583 9.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

ω

391.84

43.5 min 10

⁹³Tc ε decay (43.5 min) 1977Po13

Decay Scheme

⁹³₄₂Mo₅₁