		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 112,1163 (2011)	15-Dec-2010

 $Q(\beta^{-})=-3201.0 \ 10$; $S(n)=8069.81 \ 9$; $S(p)=7641.5 \ 25$; $Q(\alpha)=-4355 \ 4 \ 2012Wa38$ Note: Current evaluation has used the following Q record \$-3201.0 \ 108069.81 \ 9 \ 7643 \ 4 \ -4358 \ 5 \ 2003Au03,2009AuZZ. $S(p), Q(\alpha)$: from 2009AuZZ (cf. 7644 \ 4, -4360 \ 5, respectively, from 2003Au03).

Other Reactions:

 94 Mo(3 He, $\alpha\gamma$), E=30 MeV (2006Ch14,2005Gu16): measured radiative strength function (2005Gu16); measured γ multiplicity, extracted level density, deduced nuclear temperature and heat capacity.

⁹³Mo(pol d,p) theory (2006At05): description of 3p-wave threshold anomalies using hybrid angular momentum scheme; calculated σ and analyzing power as function of E(d).

⁹³Mo Levels

The yrast and near-yrast states of 93 Mo are described by 2005Fu01 as resulting from the weak coupling of a d_{5/2} neutron to states in the 92 Mo core.

Cross Reference (XREF) Flags

	A B C D E F	92 Mo(d,p), (d,pγ) 92 Mo(n,γ) E=res 92 Mo(t,d) 92 Mo(13 C, 12 Cγ) 93 Mo IT decay 93 Nb(p,nγ), (p,n)	$ \begin{array}{ll} {\sf G} & {}^{93}{\sf Tc} \ \varepsilon \ {\sf decay} \ (\\ {\sf H} & {}^{93}{\sf Tc} \ \varepsilon \ {\sf decay} \ (\\ {\sf I} & {}^{94}{\sf Mo}({\sf d},{\sf t}) \\ {\sf J} & {}^{94}{\sf Mo}({\sf p},{\sf d}) \\ {\sf K} & {}^{94}{\sf Mo}({\sf p},{\sf d}) \\ {\sf K} & {}^{94}{\sf Mo}({}^{3}{\sf He},\alpha) \\ {\sf L} & {}^{95}{\sf Mo}({\sf p},{\sf t}) \end{array} $	2.75 h) M ${}^{92}Mo({}^{16}O,{}^{15}O), (\alpha,{}^{3}He)$ 43.5 min) N ${}^{92}Mo(n,\gamma)$ E=thermal 0 ${}^{80}Se({}^{16}O,3n\gamma)$ P ${}^{93}Nb({}^{3}He,t)$ Q ${}^{92}Mo({}^{13}C,{}^{12}C)$ R ${}^{82}Se({}^{16}O,5n\gamma)$
E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	XREF	Comments
0	5/2+	4.0×10 ³ y 8	ABCDEFGHI JKLMNOPQR	%ε=100 J ^π : L(d,p)=2; E2 1477γ from $J^{\pi}=9/2^+$ 1477. configuration: $v d_{5/2}$. < $r^2 > 1/2 = 4.92$ fm for $v 2d_{5/2}$ orbital from (t,d).
943.28 7	1/2+	0.4 ps +11-2	ABCD F HIJ LMN	J^{π} : L(d,p)=0. A significant component of configuration is $\pi(g_{9/2})^2 v_{S_{1/2}}$ (1999Zh32).
1363.048 ^b 20	7/2+	104 fs 8	A DEFG IJKLM R	J^{π} : L(d,p)=4; M1+E2 1363 γ to J^{π} =5/2 ⁺ g.s.
1477.20 ^b 4	9/2+	0.27 ps 9	A DEFG IJKLm R	XREF: I(1486)L(1470). $T_{1/2}$: other: ≤ 14 ps from ⁹³ Mo IT decay. J^{π} : L(³ He, α)=4; E2 658 γ from $J^{\pi} \geq 13/2^+$ 2162.
1492.48 ^b 6	3/2+	13.9 fs 21	AB D F HIJ LmN	XREF: I(1500)L(1470). J^{π} : L(d,p)=2; log ft=6.5, log $f^{1u}t=7.6$ from $J^{\pi}=1/2^{-}$. Thus: from (n nx). Other: 0.04 ns 3 (^{13}C $^{12}C_{22}$)
1520.36 4	7/2+	0.8 ps 3	A DFGI Lm	XREF: I(1529). J^{π} : L(d,p)=4; M1+E2 1520 γ to J^{π} =5/2 ⁺ g.s.
1695.03 ^b 7	5/2+	75 fs 10	ABDF L	J ^{π} : L(d,p)=2; L(t,p)=0 for 5/2 ⁺ target (1972Ba49); D 332 γ to 7/2 ⁺ 1363.
2141.98 ^{@a} 7	5/2+	0.12 ps +8-2	B F	J ^{π} : primary γ from 1/2 ⁺ in (n, γ) E=res; D+Q 779 γ to 7/2 ⁺ 1363. 5/2 ⁺ from statistical analysis of (p,n γ) via IAS.
2145.4 ^{@a} 6	3/2+,5/2+		Α	J^{π} : L(d,p)=2.
2161.90 ^a 4	$13/2^{+}$	46 ps 6	EF R	XREF: may also be present in (d,p).

⁹³Mo Levels (continued)

E(level) [†]	Jπ‡	T _{1/2} #		XREI	7		Comments
							J^{π} : E4 263 γ from J=21/2, 2425; E2 685 γ to $J^{\pi} \le 9/2^+$.
	a /a±				_		$T_{1/2}$: from IT decay. Other: >1.6 ps in (p,n γ).
$2181.08\ 20$ $2247.13^a\ 5$	$3/2^+$ (11/2 ⁺)	37 ts +15-10 0.28 ps +9-6	AB D)FH F	L		J^{π} : L(d,p)=2; log <i>ft</i> =6.1, log $f^{1\pi}t$ =6.9 from $J^{\pi}=1/2^{-}$. J^{π} : D+Q 770 γ to 9/2 ⁺ 1477; E1 203 γ from $J^{\pi}=(13/2^{-})$ 2450
2304.18 6	$(11/2)^{-}$	0.36 ps +8-6	A D)F IJK	M		XREF: K(2270). $I(nd)=5: 11/2^{-1}$ from statistical analysis of (n na) via IAS
2356.12 5	(5/2 ⁻)	0.32 ps +13-8		F	1		XREF: 1(2370). $J^{\pi}: D+Q 836\gamma$ to $J^{\pi}=7/2^{+}$ 1520; 864 γ to $3/2^{+}$ 1492; $5/2^{-}$ from statistical analysis of (n m) via LAS
2398.20 10	(5/2)+	21 fs 3	AB	F	1		XREF: 1(2370). J^{π} : L(d,p)=2; 5/2 ⁺ from statistical analysis of (p,n γ) via
2409.15 6	9/2+	0.47 ps +10–6		FG IJK			J ^{π} : L(p,d)=4; D 162 γ to (11/2 ⁺) 2247; Q 2409 γ to 5/2 ⁺
2424.95 ^{<i>a</i>} 4	21/2+	6.85 h 7		EF	0	R	g.s. 9/2° from statistical analysis of $(p,n\gamma)$ via IAS. %IT=99.88 1; % ε +% β ⁺ =0.12 1 μ =9.93 8
							J ^{π} : from μ =9.49 22 from low temperature nuclear orientation in iron (1973Ka21) and g=0.936 25 from NMR with oriented nuclei (weighted average of 0.877 <i>19</i> (1973Ka21) and 0.946 8 (1981Ha12)); E4 263 γ to π =+ 2162.
							Configuration: $(\nu (d_{5/2}) \otimes (\pi (g_{9/2}))^{-3/2+1}; \text{ analogous to } 21/2^+ \text{ isomers in N=51 isotones } {}^{91}\text{Zr and } {}^{95}\text{Ru.}$ T _{1/2} : from IT decay.
							%IT, $\%\varepsilon + \%\beta^+$: from 1977Me03. μ : from radiative detection of NMR (1989Ra17), based on g=0.946 8 (1981Ha12); value relative to ⁹⁵ Mo. Others:
							9.49 22 (1973Ka21), 10.0 7 (1977Be19). Sign probably +.
2429.80 ^a 8	(17/2)+	3.53 ns 18		F			Configuration= $((\nu d_{5/2})(\pi 1g_{9/2})^{+2})$ (1985Su04). J ^{π} : E2 268 γ to J ^{π} =13/2 ⁺ 2162; $\gamma(\theta)$ in (p,n γ) is consistent with stretched Q transition. 17/2 ⁺ from statistical
2430.93 7	$(7/2)^+$	0.121 ps 17		F			analysis of $(p,n\gamma)$ via IAS. J ^{π} : M1+E2 2431 γ to 5/2 ⁺ g.s.; D(+Q) 1068 γ to 7/2 ⁺ 1363; 403 γ from (9/2) ⁻ 2834. However, π =- from
2437.4 7 2440.42 6	1/2 ⁺ (11/2 ⁻)	0.41 ps +15-0	AB	F			statistical analysis of $(p,n\gamma)$ via IAS. J^{π} , E(level): from (d,p). L(d,p)=0. J^{π} : 279 γ to 13/2 ⁺ 2162, 963 γ to 9/2 ⁺ 1477, 136 γ to 11/2 ⁻ 2304 imply J^{π} =(9/2 ⁺ ,11/2,13/2 ⁺); (11/2 ⁻) from statistical
2440.60 6	(9/2 ⁻)			F			analysis of $(p,n\gamma)$ via IAS. J ^{π} : D(+Q) 1078 γ to 7/2 ⁺ 1363; 9/2 ⁻ from statistical
2450.13 7	(13/2 ⁻)	0.76 ns 4		F			analysis of $(p,n\gamma)$ via IAS. J^{π} : E1 γ from J^{π} =(11/2 ⁺ ,13/2 ⁺); E1 203 γ to J \leq 11/2 2247; (13/2 ⁻) from statistical analysis of $(p, n\gamma)$ via IAS
2479.04 6	$(7/2^+)$	34 fs 4		FG			J^{π} : log <i>ft</i> =7.18, log $J^{4u}t$ =7.46 from 9/2 ⁺ ; 2479 γ to 5/2 ⁺
2529.7 8	1/2-,3/2-		A	IJ			J^{π} : 1038 γ to 3/2 ⁺ 1492; L=1 component of L=1+4 doublets
2534.89 ^a 7	(9/2)+	69 fs +10-4	A	F IJK			at E=2523 12 in (d,t) and (p,d). XREF: I(2523)J(2523). J ^{π} : L=4 in (³ He, α); 2535 γ to 5/2 ⁺ g.s.; 9/2 ⁺ from statistical analysis of (p,n γ) via IAS. Probable L=4 component of L=1+4 doublets in (p,d) and (d,t) at E=2523
2539.5 5	(3/2)	61 fs +8-7		FΗ			J^{π} : D+Q 1047 γ to 3/2 ⁺ 1492; J=3/2 from statistical

⁹³Mo Levels (continued)

E(level) [†]	Jπ‡	T _{1/2} #		XREF	Comments
					analysis of $(p,n\gamma)$ via IAS. Information on parity is contradictory: $\pi = -$ from log $ft=5.5$ from $1/2^-$ and $\pi = -$ is favored in $(p,n\gamma)$, but $\pi = +$ based on large $\delta(1047\gamma)$ to $\pi = +$ 1492 level. T _{1/2} : from DSAM in $(p,n\gamma)$ (1999Ka60).
2555 2572.93 8	(15/2 ⁻)	<0.4 ns	A	F	J ^{π} : 143 γ to J ^{π} =(17/2) ⁺ 2430, D 411 γ to 13/2 ⁺ 2162 imply J ^{π} =(13/2 ⁺ ,15/2); 15/2 ⁻ from statistical analysis of (p,n γ) via IAS.
2619 <i>15</i> 2641.86 ^{<i>a</i>} 8	1/2 ⁻ ,3/2 ⁻ (15/2 ⁺)	<0.4 ns		IJ F	$T_{1/2}$: >0.18 ps from (p,n γ). J^{π} : L(p,d)=1. J^{π} : D 480 γ to 13/2 ⁺ 2162; D 212 γ to (17/2 ⁺) 2430; π =+ from statistical analysis of (p,n γ) via IAS. $T_{1/2}$: >0.18 ps from (p.p γ)
2644.57 <i>17</i> 2667.95 ^a 7	(3/2) ⁻ (13/2 ⁺)	0.09 ps +6-3 >0.30 ps	A	F H F	$J_{1/2}^{\pi}$: log $ft=4.3$ from $J^{\pi}=1/2^{-2}$; 2645 γ to $J^{\pi}=5/2^{+}$ g.s. J^{π} : 506 γ to 13/2 ⁺ 2162; 421 γ to (11/2 ⁺) 2247; 13/2 ⁺ from statistical analysis of (p.pa) via LAS
2670.1 <i>4</i> 2695 <i>15</i> 2698.0 <i>3</i>	1/2 ⁺ 7/2 ⁺ ,9/2 ⁺ (3/2) ⁻	22 fs +8-6 37 fs +28-15	AB	F IJ FHIJ	J^{π} : L=4 component of L(p,d)=1+4 doublet. J^{π} : log <i>ft</i> =5.6 from 1/2 ⁻ ; 2698 γ to J^{π} =5/2 ⁺ g.s.
2704.6 6	1/2+	0.11 ps +6-4	AB D		However, $\pi = +$ from statistical analysis of $(p,n\gamma)$ via IAS. J^{π} : L(d,p)=0.
2719.37 13	(5/2 ⁻)	44 fs +8-6		F	$J_{1/2}^{\pi}$: 2719 γ to 5/2 ⁺ g.s.; statistical analysis of (p,n γ) via
2730.72 14	(9/2+)	114 fs +21-17		FG	J ^{π} : log ft=5.9, log f ^{1u} t=5.8 from J ^{π} =9/2 ⁺ ; 2731 γ to J ^{π} =5/2 ⁺ g.s.; 9/2 ⁺ from statistical analysis of (p,n γ)
2742.7 8	$(1/2^+)$	0.14 ps +17-5		F	J^{π} : 2743 γ to J^{π} =5/2 ⁺ g.s.; 1/2 from statistical analysis
2755.27 8	(11/2 ⁻)	>0.54 ps		F	J^{π} : 1278 γ to 9/2 ⁺ 1477; 451 γ to (11/2) ⁻ 2304; 11/2 ⁻ from statistical analysis of (p. pa) via LAS
2769.09 14	$(5/2^+)$	37 fs 5		F	J^{π} : 1406 γ to 7/2 ⁺ 1363; 2769 γ to 5/2 ⁺ g.s.; 5/2 ⁺ from statistical analysis of (p.p.) via IAS
2810.21 10	(13/2 ⁻)	<0.4 ns		F	J^{π} : 369 γ to (11/2 ⁻) 2440; M1 237 γ to (15/2 ⁻) 2573; 13/2 ⁻ from statistical analysis of (n ny) via IAS
2821.10 ^{<i>a</i>} 9	(9/2+)	58 fs 10		F	J^{π} : 134 γ to 9/2 ⁺ 1477; 1458 γ to 7/2 ⁺ 1363; 9/2 ⁺ from statistical analysis of (p.n γ) via IAS
2821.8 4	$(7/2, 9/2^+)$			G	J^{π} : log ft =6.8, log $f^{lu}t$ <8.5 from 9/2 ⁺ ; 2822 γ to 5/2 ⁺
2831.38 16	$(3/2^+)$	0.08 ps +10-4		F	J^{π} : 1136 γ to 5/2 ⁺ 1695; 3/2 ⁺ from statistical analysis of
2832.61 10	$(7/2^+)$			F	J^{π} : gammas to $7/2^+$ 1520 and $9/2^+$ 1477; $7/2^+$ from statistical analysis of (p px) via LAS
2833.55 7	(9/2 ⁻)	0.14 ps +22-5		F	J^{π} : 529 γ to $(11/2)^{-}$ 2304; $9/2^{-}$ from statistical analysis of (p, n γ) via IAS.
2834.5 ^{<i>a</i>} 3	$(11/2^+)$			F	J^{π} : 1471 γ to J^{π} =7/2 ⁺ 1363; 11/2 ⁺ from statistical analysis of (n,ny) via IAS
2840.25 9 2842.1 7 2851.89 10	$(7/2^{-})$ $1/2^{+}$ $(5/2^{-})$	100 fs +24-17 0.13 ps +140-6	A	F	J ^π : L(d,p)=0.
2861.5 5	(3/2)-		В	F HIJ	J ^{<i>n</i>} : log $ft=5.7$ from $J^{n}=1/2^{-}$; 2862 γ to $J^{n}=5/2^{+}$ g.s.; $1/2^{-}$, $3/2^{-}$ from statistical analysis of (p,n γ) via IAS.
2862.77 22	$(13/2^+)$			F	

⁹³Mo Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{#}$		XR	EF	Comments
2880.5 5	$(1/2^+, 3/2, 5/2^+)$		AB	f		XREF: f(2882).
						J^{π} : 2881 γ to 5/2 ⁺ g.s.; 1937 γ to 1/2 ⁺ 943.
						$J^{\pi} = (3/2^+)$ if level is analog of ⁹³ Tc(11289 level).
2893 15	5/2-,7/2-		Α	f		XREF: f(2882).
						J^{π} : L=3 in (d,p).
2902.11 5	$(9/2)^+$	40 fs +7-3		FG		J^{π} : log ft=4.8 from $J^{\pi}=9/2^+$; 2902 γ to $J^{\pi}=5/2^+$
						g.s.; $9/2^+$ from statistical analysis of $(p,n\gamma)$ via
2015 51 7	(11/0+)	0.10 . 12 5		-		IAS.
2915.51 /	$(11/2^{+})$	0.18 ps + 13 - 5		F		J [*] : 1438 γ to 9/2 ⁺ 14/7; 754 γ to 13/2 ⁺ 2162; 11/2 ⁺ from statistical analysis of (n ma) via IAS
2055 2 10	1/2-3/2-			F HT	1	$I_{1/2}$ from statistical analysis of (p, $I_{1/2}$) via IAS. I_{π} : I (p, d)=1
2974 04 12	$(7/2^{-})$	0.13 ps + 4 - 2		F	,	$2974y$ to $5/2^+$ g s \cdot 543y to $(7/2)^+$ 2431
2974.21 21	(72)	0.15 ps 17 2		F		J^{π} : 1611 γ to J^{π} =7/2 ⁺ 1520.
3006 5			Α	F		Additional information 1.
3024.39 24	$(5/2^+, 7/2, 9/2^+)$			F		J^{π} : 3024 γ to 5/2 ⁺ g.s.; 1547 γ to 9/2 ⁺ 1477.
3025.9 4	7/2,9/2,11/2			G		J^{π} : log $f^{1u}t < 8.5$ from $9/2^+$.
3045	7/2+,9/2+		Α			J^{π} : L(d,p)=4.
3046.32 22	$(11/2^+)$			F		J^{π} : 1683 γ to 7/2 ⁺ 1363; 11/2 ⁺ from statistical
						analysis of $(p,n\gamma)$ via IAS.
3048.23 10	$(9/2^{-})$	>38 fs		F		J^{n} : 293 γ to (11/2 ⁻) 2755; 608 γ to (9/2 ⁻) 2441; 9/2 ⁻
2057 14 10	$(15/2^{+})$			-		from statistical analysis of $(p,n\gamma)$ via IAS.
3057.14 19	$(15/2^{+})$			F		$J^{+}: 02/\gamma$ to $(1//2)^{+}$ 2430; 895 γ to $13/2^{+}$ 2162;
3064 15	1/2-3/2-			т	1	$I_{3/2}$ from statistical analysis of (p, fry) via IAS. I^{π} : I (p, d)=1
3068 86 12	$(13/2^+)$	>0.125 ps		F	,	J : L(p, d) = 1.
3084 5	(15/2)	× 0.125 ps	A	F		Additional information 2.
						E(level): from $(p,n\gamma)$.
3100.97 12	$(9/2^{-})$			F		J^{π} : 1738 γ to 7/2 ⁺ 1363; 797 γ to (11/2) ⁻ 2304; 9/2 ⁻
						from statistical analysis of $(p,n\gamma)$ via IAS.
3118.63 21	$(13/2^{-})$			F		
3142.55 21	$(11/2^+)$			F		- 2
3151.6 5	$(3/2)^{-}$			F	K	J^{π} : L(³ He, α)=1; 3/2 ⁻ from statistical analysis of
2150 2 5	2/2 + 5/2 +					$(p,n\gamma)$ via IAS.
3159.2 5	$(7/2^{-})$		A	F		J [*] : $L(0,p)=2$. I^{π} : 3161a/ to $5/2^{+}$ as estatistical analysis of (p pa)
5101.5 10	(1/2)			г		yis IAS
3178 13 21	$(11/2^{-})$			F		
3199.71 21	$(7/2^{-})$			F		J^{π} : 759 γ to (9/2 ⁻) 2441: 3200 γ to 5/2 ⁺ g.s.: 7/2 ⁻
	(.1=)					from statistical analysis of $(p,n\gamma)$ via IAS.
3210.47 25	$(7/2^{-}, 9/2, 11/2^{+})$			F		J^{π} : 378 γ to (7/2 ⁺) 2833; 455 γ to (11/2 ⁻) 2755.
						The $11/2^{-}$ assignment by 1983Mi13 in (p,n γ)
						would imply M2 multipolarity for the 378γ which
						seems untenable for the strongest deexcitation
2220 4 6	(2/2) -				_	branch. $T = 1/2 = 2220$ $T = 5/2 = 1/2$
3220.4 0	(3/2) $(12/2^{-})$		A	F HL.	J	$J^{*}: \log ft = 4.6 \text{ from } J^{*} = 1/2 ; 3220\gamma \text{ to } J^{*} = 5/2^{+} \text{ g.s.}$
3241.36 16	(13/2) $7/2^+ 0/2^+$			г т	זע	Additional information 3
5275 15	1/2 ,)/2			1.	JK	I^{π} : L=4 component of L(p,d)=1+4 doublet.
3298.2 6	$(3/2)^{-}$			F HI	J	J^{π} : log ft=4.8 from $J^{\pi}=1/2^-$: 3298 γ to 5/2 ⁺ g.s.
3348.1 4	$(9/2^{-})$			F		J^{π} : 593 γ to (11/2 ⁻) 2755; 9/2 ⁻ from statistical
						analysis of $(p,n\gamma)$ via IAS.
3379.2 <i>3</i>	$(11/2^{-})$			F	1	XREF: 1(3400).
						J^{π} : 1075 γ to (11/2) ⁻ 2304; 11/2 ⁻ from statistical
2280.20	2/0+ 5/0+			.	11-1	analysis of $(p,n\gamma)$ via IAS.
5580 20	5/2',5/2'			1.	JKT	AKEF: K(3420)1(3400).

⁹³Mo Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF	Comments
					$J^{\pi}: L(p,d)=2.$
3395.1 20	$(7/2^{-})$			F 1	XREF: 1(3400).
					J^{π} : 3395 γ to 5/2 ⁺ g.s.; 7/2 ⁻ from statistical analysis of
2406.2.5	($(p,n\gamma)$ via IAS.
3406.2 5	$(\leq 5/2)$			F I	XREF: I(3400). $\pi_{2} 24(2) \pm 1/2^{\pm} 0.42$ In (n m) 1082M(12 moment
					J ^{**} : 2403 γ to 1/2 ^{**} 943. In (p,n γ), 1983M113 suggest $\pi^{-}(5/2^{-})$ based on excit, but this implies that 4652 α is M2
					J = (3/2) based on excit, but this implies that 40357 is M2 which seems unlikely
3436 3	$(5/2^{-})$			F	I^{π} · 3436v to 5/2 ⁺ g s · statistical analysis of (n nv) via IAS
3440.9 8	$(1/2^+, 3/2, 5/2^+)$		Α	-	J^{π} : 1004 γ to (1/2 ⁺) 2437; 3441 γ to 5/2 ⁺ g.s.
3444 <i>3</i>	$(7/2^{-})$			F	J^{π} : 3444 γ to 5/2 ⁺ g.s.; statistical analysis of (p,n γ) via IAS.
3450.3 6	3/2+,5/2+		Α	IJk	XREF: I(3434)J(3434)k(3420).
					$J^{\pi}: L(d,p)=2.$
3486.17 23	$(13/2^{-})$			F	J^{π} : 385 γ to (9/2 ⁻) 3101; 13/2 ⁻ from statistical analysis of
2510.20					$(\mathbf{p},\mathbf{n}\gamma)$ via IAS.
3510 20	$7/2^+,9/2^+$			IJ	J^{n} : L(p,d)=4.
338/1/	1/2*,9/2*			IJKI	Additional information 4
					Additional information 4. I^{π} : I = 4 component of I (n d)=1+4 doublet
3590 20	$1/2^{-} 3/2^{-}$			111	XRFF (3590)
5570 20	1/2 ,5/2			10 1	J^{π} : L=1 component of L(p,d)=1+4 doublet.
3596.3 6	$3/2^+, 5/2^+$		Α	1	XREF: 1(3590).
					$J^{\pi}: L(d,p)=2.$
3650 20	7/2+,9/2+			IJ	$J^{\pi}: L(p,d)=4.$
3708.9 7	$3/2^+, 5/2^+$		Α		J^{π} : L(d,p)=2.
3720 20	1/2-,3/2-			IJ	$J^{\pi}: L(p,d) = 1.$
3790 20	$1/2^{-}, 3/2^{-}$			IJ	$J^{n}: L(p,d) = 1.$
3980 20	1/2 ,3/2			LJ m	$J^{n}: L(p,d)=1.$
3983 3	5/2-7/2-		A	ш т 1	I^{π} , I (d t) = 3 I = 1 + 3 doublet in (n d)
4070 20	$(22/2^{-})$			T)	J. $L(u,t)=3$. $L=1+3$ doublet in (p,u). π . (E1) 1725a to 21/2+ 2425 in (¹⁶ O 5na)
4139.0 9	(23/2)			i I V K	J. (E1) 17557 to 21/2 2425 III (0.5177). $I^{\pi_1}(2/2^+)$ if level is appled of ${}^{93}\text{Te}(12584 \text{ level})$
4170	5/2+			i I	J : $(5/2)$ if level is alloig of $10(12564$ level). I^{π} : L (n t)=0 on $5/2^+$ target: from the large cross section
4220	5/2			1 L	measured by 1972 ObZT it follows that this reaction
					proceeds via a large $\Delta S=0$ component.
4240 20	1/2-,3/2-			J	$J^{\pi}: L(p,d)=1.$
4370 20	1/2-,3/2-			J	J^{π} : L(p,d)=1.
4378 5			Α		J^{π} : 4378 γ to 5/2 ⁺ g.s.
4438.1 11	$(27/2^{-})$	0.8 ns 2		O R	J^{π} : stretched E2 279 γ to J=(23/2 ⁻) 4159. Interpreted in
					$({}^{16}\text{O},5n\gamma)$ (2005Fu01) as arising from weak coupling of (v
					$d_{3/2}$) to 11 ⁻ isomer in ⁹² Mo, based on energy of this level
					and nearby lower-energy states; however, other
					configurations may contribute.
					$I_{1/2}$: from centroid-shift method (2005Fu01), based on 2/8 γ
1150 25	1/2-2/2-			та м	and $1/35\gamma$ time distribution spectra in (100,5n γ).
4430 23	1/2, $3/21/2^{-} 3/2^{-}$				J : L(p, q) = 1. $I^{\pi} : L(p, q) = 1$
4630 30	$1/2^{-}, 3/2^{-}$			T1	J^{π} : L(d t)=1: L=1+(3 4) doublet in (p d)
4710 30				ĨĴ	J^{π} : L=1+3 doublet in (p,d) and (d.t).
4756 5			Α		J^{π} : 4756 γ to 5/2 ⁺ g.s.
4780 30				IJ	J^{π} : L=1+4 doublet in (p,d) and (d,t).
4899.4 9	$(25/2^+)$			O R	J^{π} : stretched (E2) 2474 γ to 21/2 ⁺ 2425.
4938 5			Α		J^{π} : 4938 γ to 5/2 ⁺ g.s.
5000 30	1/2-,3/2-			IJ	J^{n} : L(d,t)=1. L=1+3 doublet in (p,d).
5034 5			Α		J^{*} : 5034 γ to 5/2 g.s.

⁹³Mo Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF			Comments
5070 30			IJ			J^{π} : L=1+4 doublet in (p,d) and (d,t).
5150 30	$1/2^{-}, 3/2^{-}$		IJ			J^{π} : L(p,d)=1.
5585.7 11	$(29/2^+)$			0	R	J^{π} : stretched Q 686 γ to (25/2 ⁺); (E1) 1148 γ to (27/2 ⁻)
						4437.
6652.2 15	31/2			0		J^{π} : D 1067 γ to (29/2 ⁺) 5586.
6837.5 15	(29/2)				R	J^{π} : 2399 γ to (29/2 ⁻) 4437.
7027.3 15	$(33/2^{-})$			0	R	J^{π} : M2 1442 γ to (29/2 ⁺) 5586.
7097.7 18					R	J^{π} : 260 γ to (29/2) 6837.
7268.9 18	(35/2)			0	R	J^{π} : D 242 γ to (33/2 ⁻) 7027; band assignment.
8335.6 18	(35/2,37/2)			0	R	J^{π} : 1067 γ to (35/2) 7269.
8353.8 18	(31/2,33/2)				R	1516 γ to (29/2) 6837 level.
8598.0 18	(37/2)				R	262γ to $(35/2,37/2)$ 8335; 1571γ to $(33/2^{-})$ 7026.
8821.4 20	(37/2)				R	1552 γ to (35/2) 7269 level.
9001.4 21	(33/2,35/2)				R	648 γ to (31/2,33/2) 8353 level.
9171.4 20	(39/2)				R	573 γ to (37/2) 8597 level.
9647.4 <i>23</i>	(41/2)				R	476γ to (39/2) 9170 level.
9670.0 <i>23</i>	(35/2,37/2)				R	J^{π} : D or Q transition from (39/2 ⁻) 9669+x level assumed by
						2005Fu01 in ($^{16}O,5n\gamma$). 669 γ to (33/2,35/2) 9001 level.
9670.0+x	$(39/2^{-})$	1.1 μ s +15–4			R	Additional information 5.
						E(level): x is expected to be small. The existence of this
						isomer is deduced by 2005Fu01 from the observation of
						many delayed gamma rays belonging to ⁹³ Mo. The
						location of the isomer in the level scheme was deduced
						from intensities of each cascade in the nuclide. Probably
						not an yrast state (2005Fu01).
						J^{π} : possible 5-quasiparticle configuration: ν
						$((d_{5/2}g_{7/2}h_{11/2})\otimes(\pi (g_{9/2}^2))^{39/2-}$ (2005Fu01).
10890 <i>30</i>	9/2+		F IJ	F	>	E(level): from (d,t). Isobaric analog of ⁹³ Nb(g.s.). Other E:
						$10740 \ 60 \ \text{from} \ (^{3}\text{He,t}).$
						J^{π} : L(p,d)=4; isobaric analog of 9/2 ⁺ state.
10940 <i>30</i>	$1/2^{-}$		IJ			E(level): isobaric analog of ⁹³ Nb(31 level).
						J^{π} : L(p,d)=1; isobaric analog of $1/2^{-}$ state.
11590 <i>30</i>	3/2-		IJ			E(level): isobaric analog of ⁹³ Nb(687 level).
						J^{π} : L(p,d)=1; isobaric analog of $3/2^{-}$ state.
12220 30	$1/2^{-}, 3/2^{-}$		IJ			Isobaric analog of ⁹³ Nb(1290 level).
						$J^{\pi}: L(p,d)=1.$
12300 30	5/2-,7/2-		IJ			J^{π} : L(p,d)=3.
						Possible isobaric analog of ⁹³ Nb 1315, 1364 or 1395 level.

[†] From least-squares fit to adopted $E\gamma$ for levels deexcited by gammas.

^{\ddagger} From (p,n γ), based on comparison of measured and calculated (statistical theory) n-decay probabilities from analog resonances in ⁹⁴Mo and on the shape of n excitation functions across several IAS, unless noted otherwise.

[#] From $(p,n\gamma)$, unless indicated otherwise.

^(a) The 2142.0 level reported in $(p,n\gamma)$ and the 2146.0 level reported in $(d,p\gamma)$ appear to be different levels, based on E γ . Otherwise, the placements of the 2146.0 γ and 733.9 γ in $(d,p\gamma)$ must be assumed to be incorrect.

[&] 1967Dm01 report $T_{1/2}=3.0\times10^3$ y 6 based on assumption that, at $E_d=21$ MeV, $\sigma(d,2n)$ values are constant for odd mass elements of the same π in the A \approx 100 region, and that I(K x ray)=0.54 per ⁹³Mo decay. Evaluator has adjusted this value to be consistent with adopted I(K x ray)=0.73 per ⁹³Mo decay (from $\varepsilon K/\varepsilon$ (theory), $\omega_K=0.75$ and $\alpha(K)/\alpha$ (M4 theory) for 31-keV transition); however, evaluator regards value as tentative. Other: >100 y (1964Ho08).

^{*a*} Band(A): $\pi = + \nu d_{5/2} \otimes {}^{92}$ Mo(4⁺,6⁺,8⁺). States probably result from weak coupling of $\nu d_{5/2}$ to lowest J=4⁺, 6⁺ or 8⁺ states of 92 Mo core (1999Zh32).

^b Band(B): $\pi = + \nu d_{5/2} \otimes {}^{92}Mo(2^+)$. $\pi(g_{9/2})^2 \nu d_{5/2}$ states. Assignment consistent with energies predicted in jj-coupling shell model calculations using partition truncation method (1999Zh32) which predict a dominant component from this configuration.

	Adopted Levels, Gammas (continued)												
							γ ⁽⁹³ Mo)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α^{d}	Comments				
943.28	1/2+	943.27 7	100	0	5/2+	[E2]			B(E2)(W.u.)=8.E+1 +4-8 Other E γ : 943.81 <i>12</i> from (n, γ) E=thermal, 943.7 5 from ε decay (43.5 min), 941.8 7 from (¹³ C, ¹² C γ).				
1363.048	7/2+	1363.009 22	100	0	5/2+	M1+E2	+0.48 -8+6		 B(M1)(W.u.)=0.068 7; B(E2)(W.u.)=8.7 25 E_γ: weighted average of 1362.94 7 in ε decay (2.75 h) and 1363.02 3 and 1363.01 3 in IT decay. Other E_γ: 1363.16 7 in (p,nγ), 1964.1 <i>10</i> in (¹³C,¹²Cγ). Mult.,δ: from α(K)exp=0.0036 7 in ⁹³Mo IT decay, and 				
1477-20	0/2+	114 14 6	0.81.6	1363 048	7/2+	M1(+E2)	0.05 + 3.2	0 175 3	$\gamma(\theta, H, t)$ in ⁹³ Tc ε decay (2.75 h). Other δ : +0.5 +9-7 from (p,n γ). R(M1)(W,u)=0.44.45; R(E2)(W,u)=90.80				
1477.20	9/2	114.14 0	0.81 0	1303.048	1/2	MI(+E2)	-0.03 +3-2	0.175 5	E_{γ} : unweighted average of 114.024 9 and 114.065 5 from IT decay, 114.20 5 from ε decay (2.75 h) and 114.057 12 from (p,n γ). The weighted average is 114.057 13. I $_{\gamma}$: unweighted average of 0.69 2 from IT decay, 0.84 15 from ε decay (2.75 h) and 0.906 15 from (p,n γ). The weighted				
		1477.18 <i>5</i>	100.0 4	0	5/2+	E2			 average is 0.83 7. Mult.: from α(K)exp=0.30 15 in ⁹³Mo IT decay and γ(θ) in (n,γ). δ: from γ(θ) in (p,nγ). Abs(δ)<1.3 from α(K)exp in ⁹³Mo IT decay, <0.11 if B(E2)(W.u.)<300. B(E2)(W.u.)=12 4 E_γ: unweighted average of 1477.113 20 and 1477.138 2 from IT decay, 1477.14 8 from ε decay (2.75 h) and 1477.33 7 from (p,nγ). The weighted average is 1477.138 4. Other: 1480.7 16 in (¹³C,¹²Cγ). I_γ: weighted average from IT decay, ε decay (2.75 h) and (p,nγ). Mult.: from α(K)exp=0.0026 4 in ⁹³Mo IT decay; Q from γ(θ) 				
1492.48	3/2+	1492.43 8	100	0	5/2+	(M1)			in $(p,n\gamma)$. B(M1)(W.u.)=0.48 8 Mult : D from $(p, n\gamma)$: $\Lambda \pi = n\rho$ from layel scheme				
1520.36	7/2+	1520.35 6	100	0	5/2+	M1+E2	+1.3 6		B(M1)(W.u.)=0.0029 21; B(E2)(W.u.)=2.2 12 E_{γ} : weighted average of 1520.28 9 from ε decay (2.75 h) and 1520.39 7 from (p,n γ). Mult δ : from α (K)exp=0.0029 6 and α (θ H t) in 93 Tc s decay				
1695.03	5/2+	202.9 ^e 1	13.4 5	1492.48	3/2+				(2.75 h). Other δ : $-1.2 + 3-5$ from $\gamma(\theta)$ in (p,n γ). E _{γ} ,I _{γ} : from (p,n γ); however E γ =203.9, I γ =3.1 in (d,p γ)				
		331.90 9	8.5 10	1363.048	7/2+	(M1)		0.01047	suggest that this γ is misplaced there. B(M1)(W.u.)=0.56 10				

7

⁹³₄₂Mo₅₁-7

L

					Add	pted Levels	, Gammas (con	tinued)		
						γ (⁹³ Mo) (continued)			
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{d}	Comments	
1695.03	5/2 ⁺	1695.10 <i>12</i>	100.0 7	0	5/2 ⁺	(M1)			Other I γ : <5.3 in (d,p γ). Mult.: D from (p,n γ); $\Delta \pi$ =no from level scheme. B(M1)(W.u.)=0.049 7 Mult.: D from (p,n γ); $\Delta \pi$ =no from level scheme.	
2141.98	3/2 ⁺ .5/2 ⁺	2142.09 9 2146.1 ^{<i>a</i>}	$17.9 \ 5$ $100.0 \ 24$ 100^{a}	1363.048 0 0	7/2* 5/2+ 5/2+	MI+E2			Mult.: D+Q from (p,n γ); $\Delta \pi$ =no from level scheme.	
2161.90	13/2+	684.693 <i>21</i>	100	1477.20	9/2+	E2			B(E2)(W.u.)=3.3 5 E _γ : from IT decay. 684.66 7 from (p,nγ). Mult.: from α(K)exp=0.00153 24, K/L=8 1 in ⁹³ Mo IT decay and γ(θ) in (p,nγ). δ (Q,O)=+0.12 2 from γ(θ) in (p,nγ), but <0.07 from α(K)exp and <4×10 ⁻⁵ if B(M3)(W.u.)<10 (based on RUL).	
2181.08	3/2+	486.9 ^a 1238.4 ^a	30 ^a 6 70 ^a 16	1695.03 943.28	5/2 ⁺ 1/2 ⁺					
		2181.08 21	100 20	0	5/2+	(M1)			B(M1)(W.u.)= $0.029 + 11 - 14$ Mult.: D from (p,n γ); $\Delta \pi$ =no from level scheme.	
2247.13	$(11/2^+)$	769.92 8	100.0 10	1477.20	9/2+	M1+E2	+0.113 26		B(M1)(W.u.)=0.17 +4-6; B(E2)(W.u.)=3.7 +19-21 Mult.: D+Q from (p,n γ); $\Delta\pi$ =(no) from level scheme.	
2304.18	(11/2)-	884.03 8 827.02 8	3.0 <i>4</i> 100	1363.048 1477.20	7/2 ⁺ 9/2 ⁺	[E2] (E1+M2)			B(E2)(W.u.)=4.4 +11-16 Mult.: D+Q from (p,nγ); adopted $\Delta\pi$ =yes. δ: abs(δ)<0.01 from B(M2)(W.u.)<1; however, δ=+0.27 +13-10 in (p,nγ).	
2356.12	(5/2-)	835.65 8	100.0 22	1520.36	7/2+	(E1+M2)	-0.05 +3-2		B(E1)(W.u.)= 1.25×10^{-3} if $\delta = 0$. B(E1)(W.u.)= $0.00090 + 23 - 37$ Mult : D+O from (n n): $\Lambda \pi - (yes)$ from level scheme	
2398.20	$(5/2)^+$	863.65 8 2356.18 8 905.67 <i>10</i>	28.7 <i>19</i> 67 <i>3</i> 17.8 <i>24</i>	1492.48 0 1492.48	3/2+ 5/2+ 3/2+	(M1)			B(M1)(W.u.)=0.21 5 Mult : D from (n m): $\Delta \pi$ -no from level scheme	
		2398.28 17	100 3	0	5/2+	(M1)			B(M1)(W.u.)=0.065 10 Mult : D from (p, py): $\Delta \pi$ =no from level scheme	
2409.15	9/2+	161.86 <i>13</i>	8.7 10	2247.13	$(11/2^+)$	(M1)		0.0672	B(M1)(W.u.)=0.51 +9-13 Mult.: D from (p,py): $\Lambda\pi$ =no from level scheme	
		931.97 8	79 <i>3</i>	1477.20	9/2+	(M1)			B(M1)(W.u.)=0.024 +4-6 Mult.: D from (p,py): $\Delta\pi$ =no from level scheme.	
		2409.16 <i>10</i>	100.0 21	0	5/2+	(E2)			Mult.: D from (p,n γ); $\Delta\pi$ =no from level scheme. B(E2)(W.u.)=0.31 +5-7 E _{γ} : weighted average of 2409.05 <i>19</i> from ε decay (2. h) and 2409.20 <i>12</i> from (p,n γ). Mult.: Q from (p,n γ); $\Delta\pi$ =no from level scheme.	

 ∞

 $^{93}_{42}\mathrm{Mo}_{51}$ -8

L

					Adop	oted Levels,	Gammas (continu	ed)	
						γ ⁽⁹³ Mo)	(continued)		
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{d}	Comments
2424.95	21/2+	263.049 13	100.0	2161.90	13/2+	E4		0.698	B(E4)(W.u.)=1.449 17 $E_{\gamma},I_{\gamma},Mult.$: from IT decay. Mult based on $\alpha(\exp)=0.71$ 4 and sub-shell ratios in IT decay
2429.80	$(17/2)^+$	267.93 8	100	2161.90	13/2+	E2		0.0356	$B(E2)(W.u.)=4.48 \ 23$ Mult : from $\alpha(K)$ exp in (p py)
2430.93	$(7/2)^+$	1067.81 17	2.73 18	1363.048	7/2+	(M1+E2)	+0.03 1		B(M1)(W.u.)=0.0040 7; B(E2)(W.u.)=0.0032 22 Mult : D+O from (p ny): $\Delta \pi$ =no from level scheme
		2431.00 12	100.0 4	0	5/2+	M1+E2	-6.5 +14-11		B(M1)(W.u.)=0.00029 <i>I3</i> ; B(E2)(W.u.)=2.1 <i>3</i> Mult.: D+Q from $\gamma(\theta)$ in (p,n γ); Δ π =no from RUL.
2437.4	1/2+	256.7 ^a 943.6 ^{#ae}	a a	2181.08 1492.48	3/2+ 3/2+				
2440.42	(11/2 ⁻)	1493.3 ^{#ae} 136.23 <i>12</i> 278.50 <i>14</i>	<i>a</i> 0.20 <i>4</i> 0.30 <i>12</i>	943.28 2304.18 2161.90	$1/2^+$ (11/2) ⁻ 13/2 ⁺ 0/2 ⁺				Other I γ in (p,n γ): 1.22 <i>10</i> . Other I γ in (p,n γ): 0.82 <i>10</i> .
2440.60	(9/2 ⁻)	920.28 8	29.8 <i>11</i>	1520.36	7/2+ 7/2+	$D(\pm 0)$	-0.05.11		
2450.13	(13/2 ⁻)	9.73 <i>12</i> 146.00 <i>12</i> 202.98 8	8.5 5.8 4 100.0 11	1303.048 2440.42 2304.18 2247.13	$(11/2^{-})$ $(11/2)^{-}$ $(11/2^{+})$	[M1] [M1] E1	-0.05 11	29.5 <i>12</i> 0.0887 0.01630	B(M1)(W.u.)=0.72 7 B(M1)(W.u.)=0.000146 14 B(E1)(W.u.)=1.40×10 ⁻⁵ 9 Mult.: from α(K)exp in (p,nγ).
2479.04	$(7/2^+)$	288.30 17 1001.80 8 1115.95 8	3.70 21 72 4 100 5	2161.90 1477.20 1363.048	13/2+ 9/2+ 7/2+	[M1] D(+Q)			B(M1)(W.u.)=0.25 4
		2479.17 13	14.8 22	0	5/2+				Other Iγ from (p,ηγ): 39.6 25 (1976Ru03), 30 4 (1983Mi13).
2529.7 2534.89	$\frac{1}{2}, \frac{3}{2}$ $(\frac{9}{2})^+$	1038.0 ⁴ 287.78 9 1057.61 14	100 ^{<i>a</i>} 24.3 <i>13</i> 100.0 25	1492.48 2247.13 1477.20	$3/2^+$ (11/2 ⁺) $9/2^+$	(M1)			B(M1)(W.u.)=0.147 +10-22 Mult.: D from (p,n γ); $\Delta \pi$ =no from level scheme.
2539.5	(3/2)	1171.84 <i>17</i> 2534.88 <i>15</i> 1047.0 <i>5</i>	22.1 9 37.7 <i>17</i> 100	1363.048 0 1492.48	5/2 ⁺ 5/2 ⁺ 3/2 ⁺	[E2] D+Q	-1.28 +14-15		B(E2)(W.u.)=0.64 +5-10 B(M1)(W.u.)=0.119 +22-23; B(E2)(W.u.)= 1.8×10^2 3 E _γ : from (p,nγ). Mult.,δ: D+Q from γ(θ) in (p,nγ). δ implies
2572.93	(15/2 ⁻)	122.87 12	100.0 13	2450.13	(13/2 ⁻)	(M1)		0.1420	$\Delta \pi$ =no from RUL, but this contradicts π (2540 level)=- implied by log <i>ft</i> in ε decay (43.5 min). B(M1)(W.u.)>0.021 Mult.: D from α (K)exp in (p,n γ); $\Delta \pi$ =(no) from
		143.19 <i>19</i>	0.52 14	2429.80	(17/2)+				Other I γ : 3.4 5 from 1983Mi13 in (p,n γ).

9

⁹³₄₂Mo₅₁-9

⁹³₄₂Mo₅₁-9

From ENSDF

	Adopted Levels, Gammas (continued)												
	γ ⁽⁹³ Mo) (continued)												
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{d}	Comments					
2572.93	(15/2-)	410.94 9	28.9 13	2161.90	13/2+	(E1)		$B(E1)(W.u.)>2.4\times10^{-6}$					
2641.86	(15/2+)	212.09 9	39.9 15	2429.80	$(17/2)^+$	(M1)	0.0329	Mult.: D from $(p,n\gamma)$; $\Delta \pi = (yes)$ from level scheme. B(M1)(W.u.)>0.0016					
		479 92 9	100.0.23	2161.90	13/2+	(M1)		Mult.: D from α (K)exp in (p,n γ); $\Delta \pi$ =(no) from level scheme. B(M1)(Wu)>0.00035					
			100.0 25	2101.90	13/2	(1011)		Mult.: $\delta(D,Q) = +0.025$ from (p,n γ); $\Delta \pi =$ (no) from level scheme.					
2644.57 2667 95	$(3/2)^{-}$ $(13/2^{+})$	2644.53 <i>17</i> 420 85 8	100	0 2247-13	$5/2^+$ (11/2 ⁺)								
2007.95	(15/2)	506.00 8	100 4	2161.90	$13/2^+$								
2670.1	$1/2^+$	2670.1 4	100	0	$5/2^+$	[E2]		B(E2)(W.u.) = 7.6 + 21 - 28					
2098.0	(3/2) $1/2^+$	2098.0 3 524.7 ^a	$100 \\ 18^{a} 5$	2181.08	$3/2^+$			Other Eq: 522.7 12 in $({}^{13}C, {}^{12}C\gamma)$					
270110	-/-	1211.3 ^a	64 ^{<i>a</i>} 15	1492.48	$3/2^+$								
		2704.9 ^a	100 ^{<i>a</i>} 18	0	5/2+	[E2]		B(E2)(W.u.)=0.8 + 4-5					
2719.37	$(5/2^{-})$	1024.20 19	30.0 18	1695.03	$5/2^{+}$	[E1]		E_{γ} : 2705.4 16 in (15C, 12C γ). B(E1)(W.u.)=0.00161 +25-31					
	(-1-)	2719.44 17	100.0 24	0	5/2+	[E1]		B(E1)(W.u.)=0.00029 + 4-6					
2730.72	$(9/2^+)$	1035.60 21	5.6 5	1695.03	$5/2^+$	[E2]		B(E2)(W.u.)=8.8 + 16 - 18 B(E2)(W.u.)=1.24 + 10 - 23					
2742.7	$(1/2^+)$	2742.7 8	100.0 5	0	$5/2^+$	[E2]		B(E2)(W.u.)=1.0 + 4 - 10					
2755.27	$(11/2^{-})$	451.10 9	100.0 12	2304.18	$(11/2)^{-}$								
2769.09	$(5/2^+)$	1278.10 <i>10</i> 1406.15 <i>21</i>	13.6 7 64 7	1477.20	9/2+ 7/2+	[M1]		B(M1)(Wu) = 0.084.15					
2707107	(0/=)	2768.97 17	100 3	0	5/2+	[]							
2810.21	$(13/2^{-})$	237.20 14	100.0 15	2572.93	$(15/2^{-})$	M1	0.0246	B(M1)(W.u.)>0.0025 Mult : from $g(K)$ or n in (n, m)					
		369.82 9	61.6 18	2440.42	$(11/2^{-})$	[M1]		B(M1)(W.u.)>0.00041					
2821.10	$(9/2^+)$	1343.90 9	95 5	1477.20	$9/2^+$	D.(11							
2021 0	$(7/2 0/2^{+})$	1458.01 I/	100.3	1363.048	7/2 ' 5/2+	[M1]		$B(M1)(W.u.)=0.063 \ I2$					
2821.8	(7/2,9/2) $(3/2^+)$	433.13 17	30 3	2398.20	$(5/2)^+$	[M1]		B(M1)(W.u.)=0.8 + 4 - 8					
	(= (a+b)	1136.45 25	100 6	1695.03	5/2+								
2832.61	$(1/2^{+})$	1312.20 <i>10</i> 1355 67 <i>24</i>	100 4 63 7	1520.36 1477-20	9/2+								
2833.55	(9/2-)	393.02 9	100.0 22	2440.42	$(11/2^{-})$	[M1]		B(M1)(W.u.)=1.5 +6-15					
		402.68 9	42 3	2430.93	$(7/2)^+$	[E1]		B(E1)(W.u.)=0.009 + 4-9 P(M1)(W.u.)=0.21 + 8-21					
2834.5	$(11/2^+)$	1471.4 3	100 34.4 22	1363.048	$7/2^+$			$D(W11)(W.u.) = 0.21 \pm 0.21$					
2840.25	(7/2-)	484.2 <i>3</i> 1145.22 <i>9</i>	20.0 <i>25</i> 76 <i>5</i>	2356.12 1695.03	(5/2 ⁻) 5/2 ⁺	[M1]		B(M1)(W.u.)=0.20 + 5 - 6					

From ENSDF

L

$\gamma(^{93}Mo)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α^{d}	Comments
2840.25	$(7/2^{-})$	2840.15 15	100 6	0	5/2+			
2842.1	$1/2^{+}$	405.0 ^{<i>a</i>}	23 ^a	2437.4	$1/2^+$			
		1146.3 ^a	66 ^a	1695.03	5/2+			
		2842.4 ^a	100 ^{<i>a</i>}	0	5/2+			
2851.89	$(5/2^{-})$	420.9 2	67 8	2430.93	$(7/2)^+$	[E1]		B(E1)(W.u.)=0.014 + 7 - 14
		495.78 9	100 8	2356.12	$(5/2^{-})$			
2861.5	$(3/2)^{-}$	2861.5 5	100	0	5/2+			
2862.77	$(13/2^+)$	700.86 21	100	2161.90	13/2+			
2880.5	$(1/2^+, 3/2, 5/2^+)$	698.9 ^d	25 ⁴ 8	2181.08	3/2+			
		733.94	40^{4}	2145.4	3/2 ' ,5/2 '			
		$\approx 1516^{40}$	25° 13	1363.048	1/2*			
		$193/.1^{\circ}$	100° 25	943.28	1/2 *			
2002 11	$(0/2)^{+}$	2880.7° 1281.75.4	100 25	0	$\frac{5}{2}$	[M [1]		$P(M1)(W_m) = 0.071 + 8.14$
2902.11	(9/2)	1381.73 4	74 5	1320.30	1/2			$D(WI)(W.U.)=0.071 \pm 0.071$
		1424 82 15	31 1 27	1477 20	$0/2^{+}$			E_{γ}, I_{γ} . weighted average from (p, Ir γ) and ε decay (2.75 h).
		1539 01 10	100 4	1363 048	$\frac{3}{2}$	[M1]		$E_{\gamma}, E_{\gamma}, E_{\gamma}$. weighted average from (p, E_{γ}) and z decay (2.75 fr). B(M1)(W II) = 0.070 + 7 - 13
		1557.01 10	100 4	1505.040	112			E. I. : weighted average from $(n ny)$ and ε decay (2.75 h)
		2902.2.5	10.9.9	0	$5/2^{+}$	[E2]		$B(E_2)(W_{\rm H}) = 0.139 + 16 - 28$
		2902.2 3	10.9 9	0	5/2	[22]		$E_{\alpha}I_{\alpha}$; weighted average from (p.n γ) and ε decay (2.75 h).
2915.51	$(11/2^+)$	247.55 14	30.1 22	2667.95	$(13/2^+)$	[M1]	0.0220	B(M1)(W.u.)=1.1 + 4-9
		668.34 9	100 6	2247.13	$(11/2^+)$			
		753.62 9	68 <i>3</i>	2161.90	$13/2^{+}$	[M1]		B(M1)(W.u.)=0.09 + 3 - 7
		1438.40 21	15.2 22	1477.20	9/2+			
2955.2	$1/2^{-}, 3/2^{-}$	2011.9 <mark>&</mark> 10	100 <mark>&</mark>	943.28	$1/2^{+}$			
2974.04	$(7/2^{-})$	543.0 2	33 4	2430.93	$(7/2)^+$			
		1453.78 18	43 4	1520.36	$7/2^+$	[E1]		B(E1)(W.u.)=0.00020 + 4 - 7
		2973.94 19	100 3	0	$5/2^{+}$	[E1]		$B(E1)(W.u.) = 5.5 \times 10^{-5} + 9 - 17$
2974.21		1611.15 21	100	1363.048	$7/2^{+}$			
3024.39	$(5/2^+, 7/2, 9/2^+)$	1547.2 <i>3</i>	100 6	1477.20	9/2+			
		3024.3 4	41 4	0	$5/2^{+}$			
3025.9	7/2,9/2,11/2	3025.8 <mark>b</mark> 4	100 <mark>6</mark>	0	5/2+			
3046.32	$(11/2^+)$	1526.0 <i>3</i>	44 7	1520.36	7/2+			
		1683.2 <i>3</i>	100 7	1363.048	7/2+			
3048.23	(9/2 ⁻)	292.9 2	8.8 12	2755.27	$(11/2^{-})$	[M1]	0.01433	B(M1)(W.u.)<1.9
		607.64 9	100.0 12	2440.60	(9/2 ⁻)			
3057.14	$(15/2^+)$	627.34 17	100 15	2429.80	$(17/2)^+$			
2010.01	(12/2+)	895.3 10	41 12	2161.90	$13/2^+$	E2 (11)		
3068.86	$(13/2^+)$	427.00.9	100	2641.86	$(15/2^+)$	[M1]		B(M1)(W.u.) < 2.3
3100.97	(9/2)	345.8 2	59 5	2755.27	(11/2)			

11

γ (⁹³Mo) (continued)

E _i (level)	J_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{d}	Comments
3100.97	$(9/2^{-})$	796.9.3	32.3	2304.18	$(11/2)^{-}$			
	(1623.7 2	100 6	1477.20	9/2+			
		1737.8 2	74 5	1363.048	7/2+			
3118.63	$(13/2^{-})$	668.5 2	100	2450.13	$(13/2^{-})$			
3142.55	$(11/2^+)$	733.4 2	100	2409.15	9/2+			
3151.6	$(3/2)^{-1}$	2208.3 5	100	943.28	$1/2^{+}$			
3159.2	3/2+,5/2+	455.3 ^a	4 a	2704.6	$1/2^{+}$			
		1014.1 ^a	27 ^a	2145.4	$3/2^+, 5/2^+$			
		1462.9 ^a	50 ^a 13	1695.03	$5/2^{+}$			
		1665.7 ^a	100 ^{<i>a</i>} 25	1492.48	3/2+			
		≈1795 ^{ae}	25 ^a 8	1363.048	7/2+			
		3160.2 ^{<i>ae</i>}	75 ^a 25	0	5/2+			E_{γ} : possibly the same as the 3161.2 γ seen in (p,n γ) and placed from a separate level, so placement is shown as uncertain here.
3161.3	$(7/2^{-})$	3161.2 10	100	0	$5/2^{+}$			
3178.13	$(11/2^{-})$	737.7 2	100	2440.42	$(11/2^{-})$			
3199.71	$(7/2^{-})$	759.1 2	85 6	2440.60	$(9/2^{-})$			
		3199.8 10	100 6	0	5/2+			
3210.47	$(7/2^{-}, 9/2, 11/2^{+})$	377.9 <i>3</i>	100 3	2832.61	$(7/2^+)$			
		455.1 <i>4</i>	25 <i>3</i>	2755.27	$(11/2^{-})$			
3220.4	$(3/2)^{-}$	3220.3 ^{&} 6	100	0	5/2+			
3241.58	$(13/2^{-})$	791.4 <i>3</i>	18.8 20	2450.13	$(13/2^{-})$			
		801.0 2	100.0 23	2440.60	$(9/2^{-})$			
3298.2	$(3/2)^{-}$	3298.1 <mark>&</mark> 6	100	0	5/2+			
3348.1	$(9/2^{-})$	592.8 4	100	2755.27	$(11/2^{-})$			
3379.2	$(11/2^{-})$	938.7 4	66 <i>6</i>	2440.42	$(11/2^{-})$			
		1075.0 4	100 6	2304.18	$(11/2)^{-}$			
3395.1	$(7/2^{-})$	3395 2	100	0	5/2+			
3406.2	$(\leq 5/2)$	2462.9 5	100	943.28	1/2+			
3436	$(5/2^{-})$	3436 3	100	0	5/2+			
3440.9	$(1/2^+, 3/2, 5/2^+)$	1003.5		2437.4	1/2			E_{γ} : from (d,p γ).
2444	(7/2-)	3440.8	100	0	5/2 *			E_{γ} : from (a,p γ).
3444 2450 2	(1/2)	$3444 \ 3$	100	2191.09	3/2*			
3430.5	5/2, 5/2	1270.5^{4}	100 ⁴	2101.00	5/2* 1/2+			
		2300.5 3440.0 <mark>0</mark>	60 ^a	945.28	1/2 5/2 ⁺			
3486 17	$(13/2^{-})$	385 7 7	100	3100.07	$(9/2^{-})$	[F2]	0.01061	
3506.3	(13/2) $3/2^+ 5/2^+$	1452.2^{2}	72^{a}	21/15 /	(3/2)	נשבן	0.01001	
5570.5	5/2 ,5/2	2103.0^{a}	$\frac{12}{40^a}$	214J.4 1/07 /9	3/2, $3/2$			
		2105.0 3595 7 ^{<i>a</i>}	100 ^{<i>a</i>}	1472.40	$5/2^+$			
		5575.1	100	0	512			

From ENSDF

$\gamma(^{93}Mo)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult.‡	α^{d}	Comments
3708.9	$3/2^+, 5/2^+$	827.0 ^a	36 ^{<i>a</i>}	2880.5	$(1/2^+, 3/2, 5/2^+)$			
		1180.0 ^a	45 ^a	2529.7	1/2-,3/2-			
		3709.5 ^a	100 ^{<i>a</i>}	0	5/2+			
3985		3985 ^a 5	100 ^{<i>a</i>}	0	5/2+			
4159.6	$(23/2^{-})$	1734.7 ^c	100 ^c	2424.95	21/2+	(E1)		Mult.: from $\gamma(\theta)$ and polarization in (¹⁶ O,5n γ).
4378		4378 ^{<i>a</i>} 5	100 a	0	5/2+			
4438.1	$(27/2^{-})$	278.5 ^c	1000	4159.6	$(23/2^{-})$	E2	0.0311	B(E2)(W.u.) = 16.5
1756		17560 5	1000	0	5/0+			Mult.: Q from $({}^{10}\text{O},3n\gamma)$; not M2 from RUL.
4/56	(25/2+)	4/564 5	1004	0	5/21	$(\mathbf{D}\mathbf{Q})$		M = (0) + 1 + (1 + 1) +
4899.4	$(23/2^{+})$	$24/4.4^{\circ}$	100°	2424.95	21/2 ⁺ 5/2 ⁺	(E2)		Mult.: from $\gamma(\theta)$ and polarization in (**0,5n γ).
4938 5034		5034^{a} 5	100^{a}	0	5/2 5/2 ⁺			
5585 7	$(29/2^{+})$	686.2 [°]	100 [°] 3	4899.4	$(25/2^+)$	(F2)		Mult : stretched Ω from $\gamma(\theta)$ in $({}^{16}\Omega 3n\gamma)$: $\Lambda\pi - (n_0)$ from
5505.7	(2)/2)	000.2	100 5	-077	(23/2)	(L2)		polarization in $({}^{16}O.5n\gamma)$.
		1147.7 ^c	34.8 [°] 7	4438.1	(27/2 ⁻)	(E1)		Mult.: D from $\gamma(\theta)$ in (¹⁶ O,3n γ); $\Delta \pi$ =(no) from polarization in (¹⁶ O,5n γ).
6652.2	31/2	1066.5 ^C	100 ^C	5585.7	$(29/2^+)$	D		Mult.: from $({}^{16}\text{O},3n\gamma)$.
6837.5	(29/2)	2399.4 [@]	$100^{@}$	4438.1	$(27/2^{-})$			
7027.3	(33/2 ⁻)	1441.6 ^c	100 ^{<i>c</i>}	5585.7	(29/2 ⁺)	M2		Mult.: stretched Q from $\gamma(\theta)$ in (¹⁶ O,3n γ); $\Delta \pi$ from linear polarization in (¹⁶ O,5n γ).
7097.7		260.2 [@]	$100^{@}$	6837.5	(29/2)			•
7268.9	(35/2)	241.6 [@]	100 [@]	7027.3	(33/2 ⁻)	D		Mult.: from $\gamma(\theta)$ in (¹⁶ O,5n γ).
8335.6	(35/2,37/2)	1066.6 [@]	100 [@]	7268.9	(35/2)			Mult.: from $\gamma(\theta)$ in (¹⁶ O,3n γ).
8353.8	(31/2,33/2)	1516.3 [@]	$100^{@}$	6837.5	(29/2)			
8598.0	(37/2)	262.4		8335.6	(35/2,37/2)			E_{γ} : from (¹⁶ O,5n γ).
		1570.7 [@]	100 [@] 20	7027.3	(33/2 ⁻)			
8821.4	(37/2)	1552.4 [@]	$100^{@}$	7268.9	(35/2)			
9001.4	(33/2.35/2)	647.6 [@]	$100^{@}$	8353.8	(31/2.33/2)			
9171.4	(39/2)	573.4 [@]	100 [@]	8598.0	(37/2)			
9647.4	(41/2)	476.0	100	9171.4	(39/2)			
9670.0	(35/2, 37/2)	668.6 [@]	$100^{@}$	9001.4	(33/2, 35/2)			
9670.0±x	$(39/2^{-})$	$(x^{@})$	$100^{@}$	9670.0	(35/2,37/2)			

[†] From ⁹³Nb(p,n γ), except as noted. [‡] From $\gamma(\theta)$ in (p,n γ), except as noted.

13

$\gamma(^{93}\text{Mo})$ (continued)

- [#] The 944 γ and 1493 γ are possibly in cascade in (d,p γ), but the order can not be determined because levels exist at both 944 keV and 1493 keV. Thus, either or both gammas may deexcite the 2437 level.
- [@] From (¹⁶O,5n γ). Uncertainty in E γ unstated by authors.
- [&] From ε decay (43.5 min).
- ^{*a*} From (d,p γ).
- ^b From ε decay (2.75 h). ^c From (¹⁶O,3n γ).
- ^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^e Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{93}_{42}Mo_{51}$

 $^{93}_{42}{\rm Mo}_{51}$

 $^{93}_{42}{\rm Mo}_{51}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{93}_{42}{\rm Mo}_{51}$

Legend Adopted Levels, Gammas Level Scheme (continued) γ Decay (Uncertain) Intensities: Relative photon branching from each level Coincidence • Coincidence (Uncertain) 0 $= \frac{10^{1}_{0,20}}{20^{1}_{0,20}} \frac{10^{1}_{0,20}}{20^{1}_{0,00}}$ $-\frac{28e_3}{2029e_3}$ $-\frac{28e_3}{2029e_3}$ $-\frac{260e_1}{1400}$ $-\frac{9.560e_1}{1401}$ 901 - 100 - 20 -28, 20 - 00 1,3-20 - 00 $= \frac{34_{100}^{1}}{100_{100}^{1}} \frac{34_{100}^{1}}{100_{100}^{1}} \frac{1}{100_{100}^{1}} \frac{1}{100_{100}^{1}}$ $(13/2^{-})$ 2450.13 0.76 ns 4 (9/2-) 2440.60 -84--62- $(11/2^{-})$ 0.41 ps +15-0 2440.42 505 ,- 'c S 1/2+ 2437.4 1 26; 93 J 8 $(7/2)^+$ 2 2430.93 0.121 ps 17 203 040 2 Ì Ś 1000 $(17/2)^+$ 2429.80 3.53 ns 18 140 6 21/2+ 2424.95 6 6 6.85 h 7 905.05 ŝ + \$25.00 - \$100 0.47 ps +10-6 9/2+ 2409.15 6 -8° - 80 - 80 $(5/2)^+$.0 H 884 | 884 | 997 | 907 | 997 2398.20 21 fs 3 Т 1 $(5/2^{-})$ 2356.12 0.32 ps +13-8 and 1 ÷ $(11/2)^{-}$ 2304.18 0.36 ps +8-6 $(11/2^+)$ - i 786' A 2247.13 0.28 ps +9-6 1236 2181 . 68¹ 093¹ 5 3/2+ 1 1 Ð 2181.08 37 fs +15-10 -40 Ś 13/2+ 2161.90 46 ps 6 ÷ ŝ + 21 >>,00 >>,00 2 3/2+,5/2+ 2145.4 5/2+ 2141.98 0.12 ps +8-2 $= \frac{\int_{23,20}^{25,0} dn_{1} \int_{20,0}^{23,10} dn_{1} \int_{20,0}^{23,10} dn_{1} \int_{20,0}^{10} dn_{2} \int_{23,0}^{10} d$ + 152035 M1 + 152,00 1 140 1 140 1 100 5/2+ 1695.03 75 fs 10 $7/2^+$ 1520.36 0.8 ps 3 1492.48 $3/2^{+}$ 13.9 fs 21 v 0.27 ps 9 9/2+ 1477.20 7/2+ 1363.048 104 fs 8 $1/2^{+}$ <u>943.28</u> 0.4 ps +11-2 5/2+ 0 4.0×10³ y 8 ⁹³₄₂Mo₅₁

Level Scheme (continued)

Intensities: Relative photon branching from each level

⁹³₄₂Mo₅₁

