Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Coral M. Baglin	NDS 112,1163 (2011)	15-Dec-2010						

 $Q(\beta^{-})=8484 \ 9$; $S(n)=3438 \ 4$; $S(p)=15192 \ 8$; $Q(\alpha)=-7569 \ 5 \ 2012Wa38$

Note: Current evaluation has used the following Q record 8485 83438 4 *14*.86E3 5-7569 5 2003Au03,2009AuZZ. Q(β⁻), S(n), S(p), Q(α): from 2009AuZZ (cf. 8600 *100*, 3300 *100*, 14730 *110*, -7250 *310* (systematics), respectively, from 2003Au03).

Q(β⁻n)=2567 7 (2009AuZZ) (cf. 2680 100 (2003Au03)).

For isotope shift and hfs data from collinear fast beam laser spectroscopy, see 1995Ke04.

⁹³Kr Levels

Cross Reference (XREF) Flags

A $^{93}\text{Br}\,\beta^-$ decay

B 94 Br β^{-} n decay

С

²⁵²Cf SF decay

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments	
0‡	1/2+#	1.286 s <i>10</i>	ABC	%β ⁻ =100; %β ⁻ n=1.95 11 μ=-0.413 2 Δ <r<sup>2>(relative to ⁸⁶Kr) is 0.811 from collinear fast beam laser spectroscopy (1995Ke04); uncertainties are 0.004 (statistical), 0.023 (with systematic error in voltage calibration), 0.151 (total error, including uncertainty in evaluation from isotope shifts). <r<sup>2>^{1/2}(charge)=4.280 11 (2004An14). %β⁻n: Value recommended by 1993Ru01; weighted average of data from 1975As04 (1.9% 2), 1975As03 (1.92% 14), 1969Ta04 (2.6% 5). Other: 3.9% 6 (1968AmZZ). μ: from collinear fast beam laser spectroscopy (1995Ke04); ⁸³Kr standard, diamagnetic correction included. T_{1/2}: weighted average of 1.33 s 5 (1976Ru01), 1.27 s 2 (1975As04), 1.289 s 12 (1969Ca03). Others: 1.17 s 4 (1965Pa14), 1.19 s 5 (1968AmZZ).</r<sup></r<sup>	
117.45 [‡] <i>15</i>	$(3/2^+)$		AC	J^{π} : (M1) 117 γ to 1/2 ⁺ g.s.	
354.85 [‡] 25	(7/2 ⁺) [@]	10 ns 2	A C	T _{1/2} : from ²⁵² Cf SF decay. Other: 22 ns <i>12</i> from $\gamma\gamma(t)$ in ⁹³ Br β ⁻ decay. J ^π : $\Delta\pi$ =no 237γ to (3/2 ⁺) 117; absence of γ to 1/2 ⁺ g.s.; analogy to N=57 isotone ⁹⁷ Zr and N=59 nuclides ⁹⁹ Zr and ⁹⁷ Sr.	
359.46 15	$(3/2^+, 5/2^+)^{@}$		A	J^{π} : 359 γ to 1/2 ⁺ g.s.; (M1) 242 γ to (3/2 ⁺) 117; probably not 1/2 ⁺ , by analogy to ⁹⁷ Zr, ⁹⁹ Zr and ⁹⁷ Sr.	
710.10 <i>18</i> 805.40 <i>20</i>	$(3/2,5/2^+)^{@}$		A A	J^{π} : 710 γ to 1/2 ⁺ g.s.; J=1/2 unlikely by analogy to ⁹⁷ Zr, ⁹⁹ Zr and ⁹⁷ Sr.	
983.3 [‡] 11 1029.0 4 1325.9 8 1337.1 7	(11/2 ⁺)		C A A A		
1517.0 [‡] 15	$(15/2^+)$		С		
2401.8 [‡] 18	(19/2 ⁺)		С		
3199.9 [‡] 21	$(23/2^+)$		С		

Adopted Levels, Gammas (continued)

93Kr Levels (continued)

[†] From least-squares fit to $E\gamma$, assigning 1 keV uncertainty to $E\gamma$ data for which authors did not state the uncertainty.

- [‡] Band(A): π =+ sequence.
- [#] J=1/2 from collinear fast beam laser spectroscopy (1995Ke04); π =+ from comparison of μ with Schmidt values. μ is only about 22% of the single-particle value, but 1995Ke04 attribute this to quenching resulting from configuration mixing. Configuration=(v s_{1/2}) is expected for near-spherical nuclei immediately above the N=56 sub-shell closure (1995Ke04).
- [@] log ft < 5.9 is a little low for a first-forbidden transition; this may result from an incomplete decay scheme ($\approx 21\%$ of the photon intensity observed in ⁹³Br β^- decay is unplaced).

 $\gamma(^{93}\mathrm{Kr})$

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [†]	α [#]	Comments
117.45	(3/2+)	117.4 2	100	0	1/2+	(M1)	0.0832	Mult.: D from $\alpha(K)$ exp in ⁹³ Br β^- decay; $\Delta \pi$ =no based on shell-model (2000PfZZ); analogy to N=57 isotone ⁹⁷ Zr and N=59 nuclides ⁹⁹ Zr and ⁹⁷ Sr.
354.85	(7/2 ⁺)	237.4 2	100	117.45	(3/2 ⁺)	(E2)	0.0388	B(E2)(W.u.)=2.9 6 Mult.: M1 or E2 from β^- decay; $\Delta J=2$ from level scheme.
359.46	$(3/2^+, 5/2^+)$	242.0 2 359.4 2	100 <i>13</i> 6.2 <i>12</i>	117.45 0	$(3/2^+)$ $1/2^+$	(M1(+E2))	0.024 12	
710.10	(3/2,5/2 ⁺)	349.9 5 592.7 4 710.2 2	18 <i>11</i> 54 <i>13</i> 100 <i>9</i>	359.46 117.45 0	$(3/2^+, 5/2^+)$ $(3/2^+)$ $1/2^+$ $(2/2^+, 5/2^+)$			
803.40		687.9 <i>2</i>	78 6	117.45	$(3/2^+, 3/2^+)$ $(3/2^+)$			
983.3 1029.0 1325.9 1337.1	(11/2 ⁺)	628.4 [‡] 669.5 <i>3</i> 966.4 <i>7</i> 977.6 6	100 100 100 100	354.85 359.46 359.46 359.46	$(7/2^+) (3/2^+, 5/2^+) (3/2^+, 5/2^+) (3/2^+, 5/2^+)$			
1517.0	$(15/2^+)$	533.7 [‡]	100	983.3	$(11/2^+)$			
2401.8	$(19/2^+)$	884.8	100	1517.0	$(15/2^+)$			
3199.9	$(23/2^+)$	798.1 [‡]	100	2401.8	$(19/2^+)$			

[†] From ⁹³Br β^- decay.

[‡] From 2010Hw03; uncertainty unstated by authors.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

⁹³₃₆Kr₅₇

Adopted Levels, Gammas

⁹³₃₆Kr₅₇