⁹²Nb ε decay (10.15 d) 1985He18,1962Bu16,1959We30

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012				

Parent: ⁹²Nb: E=135.5 4; $J^{\pi}=(2)^+$; $T_{1/2}=10.15$ d 2; $Q(\varepsilon)=2005.9$ 18; $\%\varepsilon+\%\beta^+$ decay=100.0 Others: 1993Be08, 1983He12, 1978Co01, 1972Ei01, 1969Be07, 1967Bl03, 1953St42.

⁹²Zr Levels

E(level) [†]	$J^{\pi \ddagger}$
0.0	0^{+}
934.48 10	2^{+}
1383?	0^{+}
1495?	4+
1847.22 18	2^{+}
2066.66 17	2^{+}

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ @	Ie [@]	Log ft	$I(\varepsilon + \beta^+)^{@}$	Comments
(74.7 <i>19</i>) (294.2 <i>19</i>)	2066.66 1847.22		5.2×10 ⁻³ 2.64 <i>11</i>	7.8 6.475 <i>19</i>	5.2×10 ⁻³ 2.64 <i>11</i>	 εK=0.8089 23; εL=0.1544 18; εM+=0.0366 5 εK=0.86107 9; εL=0.11320 7; εM+=0.02573 2 1993Be08 measured K-capture probability =0.856 24.
(646.4 ^{&} 19)	1495?		$<4.5 \times 10^{-3}$	>10.0	$<4.5 \times 10^{-3}$	ε K=0.8683; ε L=0.10746 2; ε M+=0.024232 4
(758.4 ^{&} 19)	1383?		$<3.3 \times 10^{-3}$	>10.2	$<3.3 \times 10^{-3}$	εK=0.8692; εL=0.1068; εM+=0.024056 3
(1206.9 19)	934.48	0.059 [†] 3	97.30 11	6.1710 <i>17</i>	97.36 11	av E β =87.53 81; ε K=0.8704; ε L=0.1053; ε M+=0.02367
						1993Be08 measured K-capture probability =0.88 3.
(2141.4 ^{&} <i>19</i>)	0.0	≤0.012 [‡]	≤0.022 [#]	≥10.3	≤0.034	av Eβ=492.24 82; εK=0.5625 11; εL=0.06729 13; εM+=0.01510 3

[†] Weighted average of 0.056% 6 (1959We30) and 0.060% 6 (1962Bu16) gives 0.058% 4 (from $I(\gamma^{\pm})$ and $I(\gamma^{\pm})$ -I(934 γ) coin).

[‡] From comparison of G^{\pm} and $(G^{\pm})(934\gamma)$ coin data, 1959We30 deduce that <20% of positrons feed g.s.

[#] From I β and theoretical ε/β^+ . Other: 1959We30 estimate I ε (g.s.)=0% 5 from (K x ray)-934 γ coin (assuming ω K=0.70 and ε L1/ ε K=0.11).

[@] Absolute intensity per 100 decays.

& Existence of this branch is questionable.

$\gamma(^{92}{\rm Zr})$

I γ normalization: from decay scheme, if $\Sigma(I(\gamma+ce)$ to g.s.)=100%. 1962Bu16 searched for, but failed to find, a 352 γ deexciting the 1848 level; they report I(352 γ)/I(934 γ)<0.004.

	γ ⁽⁹² Zr) (continued)								
E_{γ}^{\ddagger}	I_{γ} #f	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^{π}	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
(449)	<0.0033	1383?	0+	934.48	2+	E2		0.00581 9	$\alpha = 0.00581 \ 9; \ \alpha(K) = 0.00509$ 8; \(\alpha(L) = 0.000600 \ 9; \(\alpha(M) = 0.0001042 \ 15; \(\alpha(N+) = 1.554 \times 10^{-5} \ 22 \)
(561)	<0.0045	1495?	4+	934.48	2+	E2		0.00299 5	$\begin{aligned} \alpha(N) &= 1.439 \times 10^{-7} I4 \\ \alpha(O) &= 9.48 \times 10^{-7} I4 \\ \alpha &= 0.00299 \ 5; \ \alpha(K) &= 0.00262 \\ 4; \ \alpha(L) &= 0.000303 \ 5; \\ \alpha(M) &= 5.26 \times 10^{-5} \ 8; \\ \alpha(N+) &= 7.89 \times 10^{-6} \ 11 \\ \alpha(N) &= 7.39 \times 10^{-6} \ 11; \\ \alpha(O) &= 4.93 \times 10^{-7} \ 7 \end{aligned}$
912.6 2	1.8 ^b I	1847.22	2+	934.48	2+	(M1(+E2))	-0.002 ^{<i>a</i>} 25	0.000819 12	$\alpha = 0.000819 \ I2;$ $\alpha(K) = 0.000724 \ I1;$ $\alpha(L) = 7.94 \times 10^{-5} \ I2;$ $\alpha(M) = 1.377 \times 10^{-5} \ 20;$ $\alpha(N+) = 2.10 \times 10^{-6}$ $\alpha(N) = 1.96 \times 10^{-6} \ 3;$ $\alpha(O) = 1.400 \times 10^{-7} \ 20$
934.44 ^{&} 10	100	934.48	2+	0.0	0+	E2		0.000786 11	$\begin{array}{l} \alpha = 0.000786 \ 11; \\ \alpha(\mathrm{K}) = 0.000693 \ 10; \\ \alpha(\mathrm{L}) = 7.73 \times 10^{-5} \ 11; \\ \alpha(\mathrm{M}) = 1.341 \times 10^{-5} \ 19; \\ \alpha(\mathrm{N}+) = 2.03 \times 10^{-6} \\ \alpha(\mathrm{N}) = 1.90 \times 10^{-6} \ 3; \\ \alpha(\mathrm{O}) = 1.320 \times 10^{-7} \ 19 \\ \mathrm{Mult.: \ from \ } \alpha(\mathrm{exp}) = 0.00075 \\ 25 \ (19538t42). \\ \% \mathrm{I}\gamma = 99.15 \ 4 \ \mathrm{based \ on} \\ \mathrm{adopted \ I}\gamma \ \mathrm{normalization.} \end{array}$
1132.17 ^d 14	0.0052 ^e	2066.66	2+	934.48	2+	(M1+E2)	-3.2 +5-4	0.000510 8	$\alpha = 0.000510 \ 8;$ $\alpha(K) = 0.000449 \ 7;$ $\alpha(L) = 4.96 \times 10^{-5} \ 7;$ $\alpha(M) = 8.59 \times 10^{-6} \ 12;$ $\alpha(N+) = 2.98 \times 10^{-6} \ 5$ $\alpha(N) = 1.219 \times 10^{-6} \ 17;$ $\alpha(O) = 8.57 \times 10^{-8} \ 12;$ $\alpha(IPF) = 1.67 \times 10^{-6} \ 3$
1847.5 <i>3</i>	0.86 ^c 4	1847.22	2+	0.0	0+	E2		0.000422 6	$\alpha = 0.000422 \ 6;$ $\alpha(K) = 0.0001665 \ 24;$ $\alpha(L) = 1.81 \times 10^{-5} \ 3;$ $\alpha(M) = 3.13 \times 10^{-6} \ 5;$ $\alpha(N) = 4.46 \times 10^{-7} \ 7;$ $\alpha(O) = 3.18 \times 10^{-8} \ 5;$ $\alpha(IPF) = 0.000234 \ 4$

[†] Additional information 1.
[‡] From 1969Be07, unless noted otherwise.
[#] From 1983He12, except as noted.
[@] From Adopted Gammas.

⁹²Nb ε decay (10.15 d) 1985He18,1962Bu16,1959We30 (continued)

$\gamma(^{92}\text{Zr})$ (continued)

[&] Weighted average of 934.51 7 (1967B103) and 934.3 1 (1969Be07).

- ^{*a*} From Adopted Gammas. 913γ-934γ(θ) in ε decay implies δ =+0.044 17 from A₂=+0.217 13, A₄=-0.001 19 (1962Bu16) and δ =-0.01 3 from A₂=+0.255 24, A₄=-0.032 38 (1978Co01), assuming J(1847 level)=2 (from Adopted Levels). Data allow J=2,3,4 but not 0 or 1; mult(913γ)=D+Q. Other: 1959We30.
- ^b Weighted average of 1.92 10 (1962Bu16) and 1.69 9 (1972Ei01). Other: 1.8 (1959We30).
- ^c Weighted average of 0.84 10 (1959We30), 0.90 5 (1962Bu16) and 0.79 8 (1972Ei01).
- ^d From 1985He18.
- ^{*e*} From I(1132 γ)/I(934 γ) and I(1132 γ)/I(912 γ), after correction for self absorption and internal conversion (1985He18). Uncertainty not stated.
- ^f For absolute intensity per 100 decays, multiply by 0.9915 4.

 $^{92}_{40}{
m Zr}_{52}$