## $^{92}Y \beta^-$ decay **1970Ta05**

| History         |                 |                      |                        |  |  |  |  |  |
|-----------------|-----------------|----------------------|------------------------|--|--|--|--|--|
| Туре            | Author          | Citation             | Literature Cutoff Date |  |  |  |  |  |
| Full Evaluation | Coral M. Baglin | NDS 113, 2187 (2012) | 15-Sep-2012            |  |  |  |  |  |

Parent: <sup>92</sup>Y: E=0.0;  $J^{\pi}=2^-$ ;  $T_{1/2}=3.54$  h *I*;  $Q(\beta^-)=3643$  *9*;  $\%\beta^-$  decay=100.0 Others: 1990Ma40, 1983Ia02, 1973PaYG, 1962Bu16.

## <sup>92</sup>Zr Levels

The decay scheme is essentially that proposed by 1970Ta05. It is based on coincidence results and energy sum relations. The levels at 3040 and 3264 keV, based on only one  $\gamma$  transition, are supported by  $(n,\gamma)$  and other reaction studies.

| E(level) <sup>†</sup> | $J^{\pi \#}$ | $T_{1/2}^{\ddagger}$ | E(level) <sup>†</sup> | $J^{\pi \#}$ | E(level) <sup>†</sup> | $J^{\pi \#}$ |
|-----------------------|--------------|----------------------|-----------------------|--------------|-----------------------|--------------|
| 0.0                   | $0^{+}$      | stable               | 1847.32 8             | 2+           | 2819.68 16            | 2+           |
| 934.49 6              | $2^{+}$      |                      | 2066.90 12            | $2^{+}$      | 3040.1 <i>3</i>       | 3            |
| 1382.99 12            | $0^{+}$      | 88 ps <i>3</i>       | 2339.92 7             | 3-           | 3264.0 9              | 2+           |
| 1495.60 9             | 4+           | 102 ps 3             | 2473.4? 5             | (≤2)         | 3371.4 5              | $1^{(-)}$    |

<sup>†</sup> From least-squares fit to  $E\gamma$ .

<sup>‡</sup> From  $\beta\gamma\gamma$  fast-coin timing (1990Ma40).

<sup>#</sup> From Adopted Levels.

 $\beta^{-}$  radiations

| E(decay)              | E(level) | $I\beta^{-\ddagger}$ | Log ft                         | Comments                                                      |
|-----------------------|----------|----------------------|--------------------------------|---------------------------------------------------------------|
| (272 9)               | 3371.4   | 0.012 3              | 7.33 12                        | av E $\beta$ =78.0 30                                         |
| (379 9)               | 3264.0   | 0.0011 5             | 8.85 20                        | av $E\beta = 113.8 \ 32$                                      |
| (603 9)               | 3040.1   | 0.019 4              | 8.30 10                        | av $E\beta = 195.0 \ 35$                                      |
| (823 9)               | 2819.68  | 0.100 13             | 8.06 6                         | av $E\beta = 281.5 \ 37$                                      |
| (1170 <sup>#</sup> 9) | 2473.4?  | ≤0.006               | ≥9.9                           | av E $\beta$ =426.1 39                                        |
| (1303 9)              | 2339.92  | 6.5 7                | 7.00 5                         | av $E\beta = 483.9 \ 40$                                      |
| (1576 9)              | 2066.90  | 0.24 3               | 8.76 6                         | av E $\beta$ =604.7 41                                        |
| (1796 9)              | 1847.32  | 0.43 8               | 8.73 9                         | av E $\beta$ =703.9 41                                        |
| (2147 9)              | 1495.60  | 1.15 20              | 9.75 <sup>1</sup> <i>u</i> 8   | av E $\beta$ =872.8 41                                        |
| (2260 9)              | 1382.99  | 2.3 3                | $9.58^{1u}$ 6                  | av E <i>β</i> =923.9 41                                       |
| (2709 9)              | 934.49   | 3.5 10               | 8.56 13                        | av $E\beta = 1127.3 \ 43$                                     |
| 3639 <sup>†</sup> 15  | 0.0      | 85.7 16              | 9.271 <sup>1</sup> <i>u</i> 11 | av E $\beta$ =1567.3 43<br>$\Delta$ J=2-yes shape (1962Bu16). |

<sup>†</sup> From 1983Ia02. Others: 3600 30 (1957Ga59), 3640 20 (1962Bu16).

<sup>‡</sup> Absolute intensity per 100 decays.

<sup>#</sup> Existence of this branch is questionable.

 $\gamma(^{92}{\rm Zr})$ 

Iy normalization: from measured I(913 $\gamma$ +934 $\gamma$ )/I $\beta$ =0.145 10 (1962Bu16).

Ν

| ${\rm E_{\gamma}}^{\ddagger}$ | $_{\mathrm{I}_{\gamma}}$ ‡ $f$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup>     | $\delta^{\#}$ | $\alpha^{\dagger}$ | $I_{(\gamma+ce)}f$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------|--------------------------------|------------------------|----------------------|------------------|----------------------|------------------------|---------------|--------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 448.5 1                       | 16.8 10                        | 1382.99                | $0^{+}$              | 934.49           | 2+                   | E2 <sup><i>c</i></sup> |               | 0.00583 9          |                    | $\alpha$ =0.00583 9; $\alpha$ (K)=0.00511 8; $\alpha$ (L)=0.000602 9;<br>$\alpha$ (M)=0.0001046 15; $\alpha$ (N+)=1.559×10 <sup>-5</sup> 22<br>$\alpha$ (N)=1.464×10 <sup>-5</sup> 21; $\alpha$ (O)=9.51×10 <sup>-7</sup> 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 492.6 <i>1</i>                | 3.49 21                        | 2339.92                | 3-                   | 1847.32          | 2+                   | (E1(+M2))              | ≤0.009        | 0.001344 <i>19</i> |                    | $\begin{array}{c} \alpha(N) = 1.464 \times 10^{-4} 21, \ \alpha(O) = 9.51 \times 10^{-14} \\ \alpha = 0.001344 \ 19; \ \alpha(K) = 0.001188 \ 17; \\ \alpha(L) = 0.0001305 \ 19; \ \alpha(M) = 2.26 \times 10^{-5} \ 4; \\ \alpha(N+) = 3.42 \times 10^{-6} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 561.1 <i>1</i>                | 17.3 10                        | 1495.60                | 4+                   | 934.49           | 2+                   | E2 <sup><i>d</i></sup> |               | 0.00299 5          |                    | $\alpha(N)=3.20\times10^{-6} 5; \ \alpha(O)=2.23\times10^{-7} 4$<br>$\alpha=0.00299 5; \ \alpha(K)=0.00262 4; \ \alpha(L)=0.000303 5;$<br>$\alpha(M)=5.26\times10^{-5} 8; \ \alpha(N+)=7.88\times10^{-6} 11$<br>$\alpha(N)=7.39\times10^{-6} 11; \ \alpha(O)=4.93\times10^{-7} 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 844.3 1                       | 9.0 6                          | 2339.92                | 3-                   | 1495.60          | 4+                   | (E1(+M2))              | ≤0.02         | 0.000403 6         |                    | $\alpha(1) = 1.5 \times 10^{-7} \text{ II}, \ \alpha(0) = 1.5 \times 10^{-7} $<br>$\alpha = 0.000403 \ 6; \ \alpha(\text{K}) = 0.000356 \ 5; \ \alpha(\text{L}) = 3.88 \times 10^{-5} $<br>$6; \ \alpha(\text{M}) = 6.72 \times 10^{-6} \ 10; \ \alpha(\text{N}+) = 1.022 \times 10^{-6} \ 15 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 912.8 <i>3</i>                | 4.5 4                          | 1847.32                | 2+                   | 934.49           | 2+                   | (M1(+E2))              | -0.002 25     | 0.000819 12        |                    | $\begin{array}{l} \alpha(\mathrm{N})=9.54\times10^{-7} \ 14; \ \alpha(\mathrm{O})=6.75\times10^{-5} \ 10 \\ \alpha=0.000819 \ 12; \ \alpha(\mathrm{K})=0.000723 \ 11; \\ \alpha(\mathrm{L})=7.94\times10^{-5} \ 12; \ \alpha(\mathrm{M})=1.377\times10^{-5} \ 20; \\ \alpha(\mathrm{N}+)=2.10\times10^{-6} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 934.47 <sup><i>a</i></sup> 7  | 100 6                          | 934.49                 | 2+                   | 0.0              | 0+                   | E2                     |               | 0.000786 11        |                    | $\begin{aligned} &\alpha(\mathbf{N}) = 1.96 \times 10^{-6} \ 3; \ \alpha(\mathbf{O}) = 1.400 \times 10^{-7} \ 20 \\ &\alpha = 0.000786 \ 11; \ \alpha(\mathbf{K}) = 0.000693 \ 10; \\ &\alpha(\mathbf{L}) = 7.73 \times 10^{-5} \ 11; \ \alpha(\mathbf{M}) = 1.341 \times 10^{-5} \ 19; \\ &\alpha(\mathbf{N}+) = 2.03 \times 10^{-6} \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 972.3 2                       | 0.49 5                         | 2819.68                | 2+                   | 1847.32          | 2+                   | (M1(+E2))              | +0.01 2       | 0.000715 10        |                    | $\begin{aligned} &\alpha(N) = 1.90 \times 10^{-6} \ 3; \ \alpha(O) = 1.320 \times 10^{-7} \ 19 \\ &\%[\gamma = 13.9 \ 10 \ \text{assuming adopted } I\gamma \ \text{normalization.} \\ &\alpha = 0.000715 \ 10; \ \alpha(K) = 0.000631 \ 9; \\ &\alpha(L) = 6.92 \times 10^{-5} \ 10; \ \alpha(M) = 1.200 \times 10^{-5} \ 17; \\ &\alpha(N+) = 1.83 \times 10^{-6} \ 3 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1132.4 <i>1</i>               | 1.75 11                        | 2066.90                | 2+                   | 934.49           | 2+                   | (M1+E2)                | -3.2 +5-4     | 0.000510 8         |                    | $\alpha(N)=1.708\times10^{-6} 24; \ \alpha(O)=1.221\times10^{-7} 18 \\ \alpha=0.000510 \ 8; \ \alpha(K)=0.000449 \ 7; \ \alpha(L)=4.95\times10^{-5} \\ 7; \ \alpha(M)=8.59\times10^{-6} \ 12; \ \alpha(N+)=2.99\times10^{-6} 5 \\ \alpha(N)=1.218\times10^{-6} \ 17; \ \alpha(O)=8.57\times10^{-8} \ 12; \\ \alpha(PE)=1.68\times10^{-6} 3 \\ \alpha(PE)=1.6\times10^{-6} 3 \\ \alpha(PE)=1.6\times$ |
| (1383.0 <sup>b</sup> )        | b                              | 1382.99                | $0^{+}$              | 0.0              | $0^{+}$              | E0                     |               |                    | ≤0.17              | <i>u</i> (11)-1.00×10 <i>J</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1405.4 1                      | 34.4 21                        | 2339.92                | 3-                   | 934.49           | 2+                   | (E1) <sup>e</sup>      |               | 0.000330 5         |                    | $\alpha = 0.000330 \ 5; \ \alpha(K) = 0.0001380 \ 20;$<br>$\alpha(L) = 1.491 \times 10^{-5} \ 21; \ \alpha(M) = 2.58 \times 10^{-6} \ 4;$<br>$\alpha(N+) = 0.0001750$<br>$\alpha(N) = 3.67 \times 10^{-7} \ 6; \ \alpha(O) = 2.62 \times 10^{-8} \ 4;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1847.3 <i>1</i>               | 2.59 16                        | 1847.32                | 2+                   | 0.0              | 0+                   | E2                     |               | 0.000422 6         |                    | $\alpha$ (IPF)=0.0001746 25<br>$\alpha$ =0.000422 6; $\alpha$ (K)=0.0001665 24;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

 $^{92}_{40}\mathrm{Zr}_{52}$ -2

|                                |                      |                   |                      |                   | $^{92}\mathbf{Y}\beta^{-}$         | decay 1970    | Ta05 (continued)   | )                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------|----------------------|-------------------|----------------------|-------------------|------------------------------------|---------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\gamma(^{92}$ Zr) (continued) |                      |                   |                      |                   |                                    |               | -                  |                                                                                                                                                                                                                                                                                                                                                                                           |
| $E_{\gamma}^{\ddagger}$        | $I_{\gamma}$ ‡ $f$   | $E_i$ (level)     | $\mathbf{J}_i^{\pi}$ | $E_f$ J           | $\frac{\pi}{f}$ Mult. <sup>#</sup> | $\delta^{\#}$ | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                  |
| 1995 1 2                       | 0.20.3               | 2810.68           | 2+                   | 034 40 2          | )+ (E2+M1)                         |               | 0.000410.15        | $\alpha(L)=1.81\times10^{-5} \ 3; \ \alpha(M)=3.14\times10^{-6} \ 5; \ \alpha(N+)=0.000234$ $\alpha(N)=4.46\times10^{-7} \ 7; \ \alpha(O)=3.18\times10^{-8} \ 5; \ \alpha(IPF)=0.000234 \ 4$ $\alpha=0.000(419 \ 15; \ \alpha(K)=0.000162 \ 4; \ \alpha(L)=1.76\times10^{-5} \ 4;$                                                                                                        |
| 1005.1 5                       | 0.20 5               | 2019.00           | Z                    | 954.49 2          | (E2+WII)                           |               | 0.000419 15        | $a = 0.000419  I5, a(\text{K}) = 0.000102  4, a(\text{L}) = 1.70 \times 10^{-4}  4,$<br>$a(\text{M}) = 3.05 \times 10^{-6}  6; a(\text{N}+) = 0.000236  I7$<br>$a(\text{N}) = 4.35 \times 10^{-7}  9; a(\text{O}) = 3.12 \times 10^{-8}  7; a(\text{IPE}) = 0.000236  I7$                                                                                                                 |
| 1988.6 <i>12</i>               | 0.044 15             | 3371.4            | 1(-)                 | 1382.99 0         | ) <sup>+</sup> (E1)                |               | 0.000702 10        | $\alpha(N)=4.53\times10^{-5}, \alpha(O)=2.12\times10^{-7}, \alpha(IIII)=0.000250^{-17}$<br>$\alpha=0.000702^{-10}; \alpha(K)=7.90\times10^{-5} 11; \alpha(L)=8.50\times10^{-6} 12;$<br>$\alpha(M)=1.470\times10^{-6} 21; \alpha(N+)=0.000613$<br>$\alpha(N)=2.09\times10^{-7} 3; \alpha(O)=1.500\times10^{-8} 21; \alpha(IPF)=0.000613$<br>9                                              |
| 2067 <mark>8</mark>            | < 0.01 &             | 2066.90           | 2+                   | 0.0 0             | )+                                 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                           |
| 2105.6 3                       | 0.137 19             | 3040.1            | 3                    | 934.49 2          | $D^+$ D(+Q)                        | -0.04 +4-9    |                    |                                                                                                                                                                                                                                                                                                                                                                                           |
| 2339.9 <i>1</i><br>2437.0 8    | 0.103 25<br>0.022 10 | 2339.92<br>3371.4 | $3 1^{(-)}$          | 0.0 0<br>934.49 2 | ) <sup>+</sup> (E1(+M2))           |               | 0.00073 25         | $\alpha$ =0.00073 25; $\alpha$ (K)=0.00012 7; $\alpha$ (L)=1.3×10 <sup>-5</sup> 7;<br>$\alpha$ (M)=2.3×10 <sup>-6</sup> 12; $\alpha$ (N+)=0.0006 4<br>$\alpha$ (N)=3.2×10 <sup>-7</sup> 17; $\alpha$ (O)=2.3×10 <sup>-8</sup> 12; $\alpha$ (IPF)=0.0006 4                                                                                                                                 |
| 2473.4 <sup>@</sup> 5          | 0.019 18             | 2473.4?           | (≤2)                 | 0.0 0             | )+                                 |               |                    |                                                                                                                                                                                                                                                                                                                                                                                           |
| 2819.8 3                       | 0.030 9              | 2819.68           | 2+                   | 0.0 0             | ) <sup>+</sup> E2                  |               | 0.000785 11        | $ \begin{array}{l} \alpha = 0.000785 \ 11; \ \alpha(\mathrm{K}) = 7.87 \times 10^{-5} \ 11; \ \alpha(\mathrm{L}) = 8.48 \times 10^{-6} \ 12; \\ \alpha(\mathrm{M}) = 1.468 \times 10^{-6} \ 21; \ \alpha(\mathrm{N}+) = 0.000696 \\ \alpha(\mathrm{N}) = 2.09 \times 10^{-7} \ 3; \ \alpha(\mathrm{O}) = 1.502 \times 10^{-8} \ 21; \ \alpha(\mathrm{IPF}) = 0.000696 \\ 10 \end{array} $ |
| 3263.9 9                       | 0.008 3              | 3264.0            | 2+                   | 0.0 0             | ) <sup>+</sup> E2                  |               | 0.000956 14        | $\alpha = 0.000956 \ 14; \ \alpha(\text{K}) = 6.17 \times 10^{-5} \ 9; \ \alpha(\text{L}) = 6.64 \times 10^{-6} \ 10; \\ \alpha(\text{M}) = 1.150 \times 10^{-6} \ 17; \ \alpha(\text{N}+) = 0.000886 \ 1 \\ \alpha(\text{N}) = 1.639 \times 10^{-7} \ 23; \ \alpha(\text{O}) = 1.179 \times 10^{-8} \ 17; \\ \alpha(\text{IPF}) = 0.000886 \ 13$                                         |
| 3371.2 6                       | 0.022 3              | 3371.4            | 1(-)                 | 0.0 0             | ) <sup>+</sup> (E1)                |               | 0.001448 21        | $\alpha = 0.001448 \ 21; \ \alpha(K) = 3.73 \times 10^{-5} \ 6; \ \alpha(L) = 3.99 \times 10^{-6} \ 6; \alpha(M) = 6.90 \times 10^{-7} \ 10; \ \alpha(N+) = 0.001406 \ 20 \alpha(N) = 9.83 \times 10^{-8} \ 14; \ \alpha(O) = 7.07 \times 10^{-9} \ 10; \ \alpha(IPF) = 0.001406 20 $                                                                                                     |

<sup>†</sup> Additional information 1.

S

<sup>‡</sup> From 1970Ta05. Energies above 2100 keV were reported by 1970Ta05 only. Below 2 MeV, energies and intensities from 1962Bu16 and 1970Ta05 are in good agreement.

<sup>#</sup> From Adopted Gammas, except as noted.

<sup>(e)</sup> 1978GI04 observe a 2475 $\gamma$  in (n,n' $\gamma$ ) also; however, its threshold clearly indicates that decay is from E(level)>2473, and 1978GI04 assign it to a level which also deexcites via a 1068 $\gamma$  (absent in <sup>92</sup>Y  $\beta^-$  decay). That  $\gamma$  presumably differs from the 2473 $\gamma$  reported here.

& From 1970Ta05, who observe only a sum peak at this energy. 1962Bu16 report I(2067 $\gamma$ )=0.3 *1*. This  $\gamma$  ray is absent in (n, $\gamma$ ), which does reveal weak 571 $\gamma$  and 219 $\gamma$  ( $\approx$ 0.7% branches) deexciting this level in that reaction, yet absent in <sup>92</sup>Y  $\beta^-$  decay. Evaluator does not adopt this  $\gamma$  ray.

 $^{92}_{40}\mathrm{Zr}_{52}$ -3

 $\gamma(^{92}$ Zr) (continued)

- <sup>a</sup> Weighted average of 934.44 9 (1979Bo26) and 934.5 1 (1970Ta05).
- <sup>b</sup> Transition not observed in <sup>92</sup>Y  $\beta^-$  decay. 1962Bu16 report I(1383 ce(K))/I(448 $\gamma$ ) $\leq$ 0.01.
- <sup>c</sup> A<sub>2</sub>=+0.37 6, A<sub>4</sub>=+1.15 8 from 449 $\gamma$ -934 $\gamma(\theta)$  (1962Bu16); hence this is a 0-2-0<sup>+</sup> cascade and mult(449 $\gamma$ )=Q (1962Bu16).
- <sup>d</sup> A<sub>2</sub>=+0.11  $\delta$ , A<sub>4</sub>=-0.02  $\delta$  for 561 $\gamma$ -934 $\gamma(\theta)$  (1962Bu16). This allows J=1 to 4 for 1496 level; if J=4,  $\delta(561\gamma)$ =+0.01 +11-9 or +1.6 +4-3. Evaluator adopts the former  $\delta$  and assigns mult(561 $\gamma$ )=E2 for this 4<sup>+</sup> to 2<sup>+</sup> transition (see Adopted Levels).
- <sup>*e*</sup> A<sub>2</sub>=-0.086 *16*, A<sub>4</sub>=-0.005 *26* for 1405 $\gamma$ -934 $\gamma(\theta)$  (1962Bu16). This allows J=1,3,4, not 2 for 2340 level. If J=3,  $\delta(1405\gamma)$ =-0.019 +21-20 and mult(1405 $\gamma$ )=E1(+M2), assuming adopted J<sup> $\pi$ </sup>. See comment on  $\delta(1405\gamma)$  in (n, $\gamma$ ) source dataset.
- <sup>f</sup> For absolute intensity per 100 decays, multiply by 0.139 13.
- <sup>g</sup> Placement of transition in the level scheme is uncertain.

## $^{92}Y \beta^{-}$ decay 1970Ta05

