92 Zr(p,p'), (pol p,p') 1979De11,1968Di05

		History				
уре	Author	Citation	Literature Cutoff Date			
valuation Con	ral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012			
Wa01, 1994Pl2 =160 MeV], 19) level for E(p):	ZY, 1986Pl03, 81Ba54, 1979F =14.25 MeV, 1	1984Ka13, 1983Ba06, 19 Pl01, 1978De28, 1977De0 9.4 MeV, 30 MeV, 103.5	82Cr02, 1982Dj04, 1982Ka27, 1982Sc17, 03, 1976De09, 1973OwZZ [E(p)=61 MeV], MeV for comparison with existing			
ransfer depende es for comparis	ence of σ At E on with new m	(p)=800 MeV for the full measurements performed A	y-symmetric (934-keV) and the At iThemba labs (FWHM=30) and data from			
$x_{c} = \frac{1}{2} 1$	τ (6 angles); A($\tau(\theta)A(\theta)$; 930, V ; $\theta(lab)=12^{\circ}-$	(θ), 930 level. 1850, 2070, 4420 levels. 28°; $\sigma(\theta)$, A(θ); DWBA;	deduced β _L R; 0, 930, 1490, 2350,			
1983Ba06: E(pol p)=800 MeV; FWHM=120 keV; θ(c.m.)≈3°-20°; σ(θ), A _y (θ); DWBA. See also 1981Ba54. 1982Cr02: E(p)=201 MeV; FWHM=80 keV; θ(c.m.)≈5°-55°; σ(θ); DWBA; M1 giant resonance. See also 1982Dj04, 1981An08. 1982Ka27: E(p)=115 MeV; FWHM=250 keV; θ(lab)=14°-30°. σ(θ); DWBA; giant resonances. 1982Sc17: E(pol p)=104 MeV; θ(c.m.)=12.5°-51°; σ(θ), A _y (θ); Optical model; elastic only.						
IN = 60-80 keV I = 40 keV, θ (lab h.)≈30° − 150°; A I = 40 keV, θ (lab h.)≈30° − 140°; A = 80 keV, $\Delta E = 1$) and 2480(5 ⁻) alyzing powers	A(θ); 930, 1500 V; θ(c.m.)≈25°-)=25°-165°; Δ 17 levels. 10 keV, θ=20°- states, coupled well (1979De1	120 ; $\sigma(\theta)$, $A(\theta)$; 930, 1), 1850, 3230, 4040+4060 -125° . $\sigma(\theta)$, $A(\theta)$; DWBA $AE \le 1\%$; DWBA; 21 level -160° ; DWBA; 18 levels. d-channel calculations usi 1).) levels. A. See also 1976De09. s.			
	YppevaluationConValuationConValuationConValuationConValuationConValuationConValuationCon1994D level for E(p):ransfer dependeres for comparised $\sigma(\theta)$ for elassc.m.) $\approx 45^{\circ} - 110^{\circ}$ n.) $\approx 30^{\circ} - 150^{\circ}$; dWHM ≈ 250 keV;ØDR regions.VHM ≈ 250 keV; $\theta(c.m)$ I=250 keV; $\theta(c.m) = 12.5^{\circ} - 51^{\circ}$ HM=60-80 keVn.) $\approx 30^{\circ} - 150^{\circ}$; dHM=80-100 keVI=80 keV, $\theta(lab)$ n.) $\approx 30^{\circ} - 140^{\circ}$; iI=80 keV, $\Delta E = 1^{\circ}$) and 2480(5^{-})alyzing powers	YpeAuthorvaluationCoral M. BaglinWa01, 1994PIZY, 1986PI03, =160 MeV], 1981Ba54, 1979FD level for E(p)=14.25 MeV, 1ransfer dependence of σ At Ees for comparison with new meed $\sigma(\theta)$ for elastic scattering. c.m.)≈45°-110° (6 angles); A(0, n)≈30°-150°; $\sigma(\theta)A(\theta)$; 930, WHM≈250 keV; $\theta(\text{c.m.})≈3°-20$ E80 keV; $\theta(\text{c.m.})≈5°-55°; \sigma(0, m)=12.5°-51°; \sigma(\theta), A_y(\theta); 930, 1500°, m)=12.5°-51°; \sigma(\theta), A_y(\theta); 930, 1500°, m)=12.5°-51°; \sigma(\theta), A_y(\theta); 930, 1500°, m)=1200°, keV; \theta(\text{c.m.})≈20°-160°, A(\theta); 930, 1500°, m)=30°-150°; A(\theta); 930, 1500°, m]=30°-140°; 17 levels.E80 keV, \Delta E=10 keV, \theta=20°-1°, and 2480(5°) states, coupledalyzing powers well (1979De1$	YpeAuthorHistory CitationvaluationCoral M. BaglinNDS 113, 2187 (2012)IWa01, 1994PIZY, 1986PI03, 1984Ka13, 1983Ba06, 19 =160 MeV], 1981Ba54, 1979PI01, 1978De28, 1977De00) level for E(p)=14.25 MeV, 19.4 MeV, 30 MeV, 103.5ransfer dependence of σ At E(p)=800 MeV for the full es for comparison with new measurements performed Aed $\sigma(\theta)$ for elastic scattering.c.m.)≈45°-110° (6 angles); A(θ), 930 level.n.)≈30°-150°; $\sigma(\theta)A(\theta)$; 930, 1850, 2070, 4420 levels.WHM≈250 keV; $\theta(lab)=12°-28°$; $\sigma(\theta)$, A(θ); DWBA; EBR regions.(HM=120 keV; $\theta(c.m.)≈3°-20°$; $\sigma(\theta)$, Ay(θ); DWBA, Si [=80 keV; $\theta(c.m.)≈5°-55°$; $\sigma(\theta)$; DWBA; M1 giant resonance.(m.)=12.5°-51°; $\sigma(\theta), A_y(\theta)$; Optical model; elastic onlHM=60-80 keV; $\theta(c.m.)≈20°-120'$; $\sigma(\theta), A(\theta)$; 930, 1500, 1850, 3230, 4040+4060(HM=80-100 keV; $\theta(c.m.)≈25°-125°$. $\sigma(\theta), A(\theta)$; DWBA; 21 levels.(m.)≈30°-150°; A(θ); 930, 1500, 1850, 3230, 4040+4060(HM=80-100 keV; $\theta(c.m.)≈25°-125°$. $\sigma(\theta), A(\theta)$; DWBA; 21 levels.(=80 keV, $\Delta E=10$ keV, $\theta=20°-160°$; DWBA; 18 levels.(=80 keV, $\Delta E=10$ keV, $\theta=20°-160°$; DWBA; 18 levels.(=80 keV, $\Delta E=10$ keV, $\theta=20°-160°$; DWBA; 18 levels.() and 2480(5 ⁻) states, coupled-channel calculations usi alyzing powers well (1979De11).			

⁹²Zr Levels

L [‡]	$\beta_{\rm L}^{\#}$
2	0.13
$0^{@}$	
4	0.068
2 d	0.055
2	0.043
3	0.18
5 [@]	0.075@
(2)	0.054
2	0.039
4 [@]	0.06
	0
4 [@]	0.09
	$ \begin{array}{c} L^{\ddagger} \\ 2 \\ 0^{@} \\ 4 \\ 2^{d} \\ 2 \\ 2 \\ 3 \\ 5^{@} \\ (2) \\ 2 \\ 4^{@} \\ 4^{@} \end{array} $

⁹²Zr(p,p'), (pol p,p') 1979De11,1968Di05 (continued)

⁹²Zr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	L‡	$\beta_{\rm L}^{\#}$	Comments
3870 10				
3940? ^{&} 39				
3990 & 40				
4020 10				
4150 10				
$4430^{\circ} 10$		(2)	0.064	
4720 ^{&} 47				
8.8×10 ³ ^e 2	1+ e	0 ^e		J^{π} : from L=0.
$14.4 \times 10^{3} f$ 2		2+4 f		
17.5×10 ³ ^g 3		$0+1+4^{g}$		

- [†] From 1966St15 if $\Delta E=10$ keV, from 1968Di05 if $\Delta E>10$ keV and from 1967Ma14 if ΔE unstated. E values from 1966St15 are typically 15 to 20 keV low, based on comparison with adopted E for E<3300. An additional level at 2750 *10*, reported by 1966St15 and 1967Ma14, has been reassigned by 1968Di05 to ⁹⁰Zr.
- [‡] Deduced from DWBA analysis of $\sigma(\theta)$ (1966St15).
- [#] $\beta_{\rm L}$ -values from 1966St15.
- [@] From 1968Di05.
- [&] Observed by 1968Di05 only.
- ^a Observed by 1967Ma14 only.
- ^b Reported by 1969Di05 only. Energy similar to that of known ⁹⁰Zr state but, based on peak strength in the ⁹²Zr spectrum, authors conclude that it cannot be ascribed to ⁹⁰Zr alone.
- ^c Possible doublet; 1968Di05 report peak broader than expected for single level (1968Di05).
- ^d From 1983Ba06.
- ^e From 1982Cr02, for M1 giant resonance; Γ=1.4 MeV 2 (1982Cr02,1982Dj04) (supersedes 1.7 MeV 2 from 1981An08).
- ^f From 1984Ka13, for GQR; Γ=3.6 MeV; %EWSR: 43% 6 (L=2), 4.0% 15 (L=4). Other: 1982Ka27.
- ^g From 1984Ka13, for GMR+GDR; Γ=3.3 MeV; %EWSR: 27% 12 (L=0), 9.5% 25 (L=4), 65% (L=1). Note, however, that observed Γ for this L=0+1+4 resonance is less than that in (γ ,n) for GDR alone. Other: 1982Ka27.