⁸⁸Sr(⁷Li,2npγ) 1976Br24

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012

E(⁷Li)=34 MeV, 82.6% ⁸⁸Sr target, Ge(Li) and intrinsic germanium detectors.

92Zr Levels

E(level)	\mathbf{J}^{π}	T _{1/2} †	E(level)	J^{π}	T _{1/2} †	E(level)	J^{π}	T _{1/2} †
0.0	0^{+}		2957.8 [‡] 6	$(6^+)^{\ddagger}$	≤3.5 ns	3999.0? <i>13</i>	(9 ⁻) [#]	≤3.5 ns
934.51 20	2+	≤3.5 ns	3309.1 [‡] 6	$(8^+)^{\ddagger}$	≤2.4 ns	4297.0 [‡] 7	$(10^+)^{\ddagger}$	\leq 3.5 ns
1495.5 <i>3</i>	4+	≤3.5 ns	3380.0? 11	$(7^{-})^{\#}$	≤3.5 ns	4947.6 [‡] 9	$(12^+)^{\ddagger}$	\leq 3.5 ns
2486.0 4	(5 ⁻) [@]	≤3.5 ns	3819.6? 12	(8 ⁻) [#]	≤3.5 ns			

[†] From measurements of delayed γ rays with pulsed-beam timing, $T_{1/2} \leq 3.5$ ns for all γ rays observed by 1976Br24.

[‡] The 651 γ , 988 γ , 351 γ , 1462 γ are coincident with each other; their relative I γ and $\gamma(\theta)$ establish their order and indicate that these four γ rays, together with the 561 γ and 934 γ , form a sequence of stretched quadrupole transitions (1976Br24).

[#] Deduced by authors (1976Br24) from sign of A₂, assuming yrast decay. π based on typical partial width ratios, $\Gamma(E1)/\Gamma(E2)$, in the α =90 mass region.

[@] J=3 or 5 based on 990 $\gamma(\theta)$; 1976Br24 favor 5 based on yrast arguments.

 $\gamma(^{92}\mathrm{Zr})$

Measured: $\gamma\gamma$ coincidences, γ angular distributions, pulsed-beam γ -timing measurements (FWHM=8 ns; repetition period, 0.5, 1 μ s).

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
179.4 [#] 5	4.0 4	3999.0?	(9 ⁻)	3819.6?	(8 ⁻)	D	$A_2 = -0.22 \ I2, \ A_4 = +0.15 \ I4.$
351.3 2	34 <i>3</i>	3309.1	(8^{+})	2957.8	(6^{+})	Q	$A_2 = +0.29 2, A_4 = -0.08 2.$
439.6 [#] 5	7.0 7	3819.6?	(8-)	3380.0?	(7^{-})	D	$A_2 = -0.24 5, A_4 = -0.04 6.$
561.0 2	83 8	1495.5	4+	934.51	2+	Q	$A_2 = +0.29 \ l, A_4 = -0.07 \ 2.$
619 [#] 2	≈7 [‡]	3999.0?	(9 ⁻)	3380.0?	(7^{-})		
650.6 5	9.0 9	4947.6	(12^{+})	4297.0	(10^{+})	(Q)	$A_2 = +0.42 9, A_4 = -0.12 10.$
894 [#] 1	≈18	3380.0?	(7^{-})	2486.0	(5 ⁻)		$A_2 = +0.185, A_4 = -0.037.$
934.5 2	100 10	934.51	2+	0.0	0^{+}	Q	$A_2 = +0.27 2, A_4 = -0.07 2.$
987.9 <i>2</i>	19 2	4297.0	(10^{+})	3309.1	(8^{+})	(Q)	$A_2 = +0.21 \ 8, \ A_4 = -0.07 \ 9.$
990.5 <i>2</i>	25.0 25	2486.0	(5 ⁻)	1495.5	4+	D	$A_2 = -0.22 \ 6, \ A_4 = +0.01 \ 8.$
1462.3 5	38 4	2957.8	(6^{+})	1495.5	4+	(Q)	$A_2 = +0.20 3, A_4 = -0.06 4.$

[†] From $\gamma(\theta)$. If 1462 γ were M2 or E3, T_{1/2} would imply a strength larger than typical in this mass region; similarly, authors assume all observed transitions with lower E γ are E2, E1, M1.

[‡] From $\gamma\gamma$ coin.

[#] Placement of transition in the level scheme is uncertain.

 $^{92}_{40}\mathrm{Zr}_{52}$ -2

 $^{92}_{40}{
m Zr}_{52}$